
Kinetics of shape equilibration for two dimensional islandsPablo Jensen� (a), Nicolas Combe (a), Hern�an Larralde (b), Jean Louis Barrat (a), Chaouqi Misbah (c) and AlbertoPimpinelli (d)(a) D�epartement de Physique des Mat�eriaux, UMR CNRS 5586, Universit�e Claude Bernard Lyon-1, 69622 VilleurbanneC�edex, FRANCE;(b) Instituto de F��sica, Lab. de Cuernavaca, Apdo. Postal 48-3, C.P. 62251, Cuernavaca, Morelos, MEXICO(c) Laboratoire de Spectrom�etrie Physique, Universit�e Joseph Fourier (CNRS), Grenoble-1, B.P. 87, 38402 Saint-Martind'H�eres C�edex, FRANCE(d) LASMEA, Universit�e Blaise Pascal Clermont-2, Les C�ezeaux, 63177 Aubi�ere C�edex, FRANCEWe study the relaxation to equilibrium of two dimensional islands containing up to 20000 atomsby Kinetic Monte Carlo simulations. We �nd that the commonly assumed relaxation mechanism- curvature-driven relaxation via atom di�usion - cannot explain the results obtained at low tem-peratures, where the island edges consist in large facets. Speci�cally, our simulations show that theexponent characterizing the dependence of the equilibration time on the island size is di�erent athigh and low temperatures, in contradiction with the above cited assumptions. Instead, we proposethat - at low temperatures - the relaxation is limited by the nucleation of new atomic rows on thelarge facets : this allows us to explain both the activation energy and the island size dependence ofthe equilibration time. I. INTRODUCTIONThere is a continued interest in the understanding, description and control of structures at the nanometer scales[1{7]. This is partially due to technological applications of nanostructures, and partially to the fundamental interest ofunderstanding how macroscopic concepts can (or cannot) be extrapolated down to these scales. On the technologicalside, a controlled preparation and conservation of these structures demands a comprehension of their time evolution,which could be rapid due to the small scales involved (typical structures contain some hundred atoms). From thefundamental point of view, it is interesting to investigate how the theoretical tools which have been developed to dealwith the kinetic evolution of macroscopic objects (size larger than a micrometer) by Herring, Mullins and Nichols [9],which are based on coarse-grained, continuous equation, can be used at the nanometer scale. For example, one couldwonder whether sintering of ceramic or metallic nanopowders can be analyzed with these classic tools since it is notclear that macroscopic concepts such as curvature, chemical potential, etc. should retain their relevance when dealingwith structures containing only few atoms.Here, we focus in the dynamics of equilibration of two dimensional (2D) nanocrystallites starting in an out ofequilibrium shape. Mullins's theory of shape relaxation is based on the curvature being well de�ned. Then, twoquestions arise. Can one use partial di�erential equations to study the shape relaxation of faceted nanocrystals? Canone use them at all far from the thermodynamic limit|i.e. for small crystallites? Studying the validity of the partialdi�erential equations approach at various length scales and temperatures is important since this formalism is alsoused by experimentalists to derive di�usion constants [10,11] or interpret their data [12]. Some workers [13,14] havealso used this approach as a black box to calculate the time evolution of di�erent structures. Our study is related toone of the major problems of equilibrium surface physics : the comprehension of the relaxation of a perturbed surfacepro�le, below its roughening temperature TR [15]. Above TR, the surface (of an in�nite volume crystal whose ratiosurface area/volume is �nite) is rough. This is equivalent to say that the step free energy vanishes identically (stepscan be created at no free energy cost), and it also implies that the surface free energy is an analytic function of thelocal slope. Below TR the surface is smooth. This means that the step free energy is non-vanishing, and that thesurface free energy is non-analytic. Indeed, below TR the surface free energy displays cusps at particular orientations,which coincide with facets in the equilibrium shape. In the thermodynamic limit, the chemical potential of a crystalis de�ned from the Gibbs-Thomson relation, � = 
K, in terms of the surface crystal curvature K. On facets, thecurvature is ill-de�ned, and the chemical potential is �xed by the curved part surrounding the facet. For the relaxationof a 2D surface (the surface of a bulk crystal), it is generally believed that Mullins' treatment is correct above TR.Below this temperature, di�erent approaches have been proposed [16].Molecular dynamics (MD) simulations of the coalescence of three-dimensional clusters containing roughly 1000atoms, have shown that the relaxation kinetics is slower than predicted by Mullins' theory [17]. However, MDsimulations are still limited in computation time (no more than � 10ns) and it is therefore di�cult to follow the1



coalescence at temperatures not too close to the melting temperature (see also [4,6]). An alternative method consistsin using Kinetic Monte Carlo (KMC) simulations which allow an incomparable larger range of time studies. As a�rst attempt, we have chosen to study a two-dimensional (2D) system, namely the relaxation kinetics of 2D facetedislands supported on a triangular lattice.The basic idea is the following : we start with a island with a shape clearly not an equilibrium one (e.g. withan x side 10 times longer than the y side) and anneal it at a given temperature. Indeed, the perimeter free energydictates the equilibrium shape, which is the one that minimizes the island free energy at given volume (here weexpect hexagonal shapes because of the lattice geometry). We assume that the island has relaxed when the aspectratio (de�ned as the ratio of the x and y gyration radii, � = �x=�y) becomes 1. We then monitor the kinetics ofthe relaxation process, which depends on the precise pathway chosen by the island to change its shape. We areparticularly interested in the inuence of facets in the relaxation kinetics. For this reason, we perform simulations atseveral temperatures: at high temperatures, where the islands contour is clearly rough and only small facets can bedistinguished; at low temperatures, where clear-cut and persistent facets are apparent. This point is quite delicate,because a 2D object|whose contour is a line, not a surface|is not expected to show facets at any temperature in thethermodynamic limit. Indeed, a line is rough at all non-zero temperatures, and the line tension  (Jm�1) is analyticfor all orientations [15]. However, facets do appear at T = 0, and at low T one would expect the persistence lengthof a facet (the average distance between kinks) to be quite large. If it is larger than the island side, then facets areindeed expected, as we observe. In other words, creating a kink costs a �nite energy, which is always compensated bythe entropy gain when the length of the line goes to in�nity (cf. Landau's argument for the non-existence of phasetransitions in 1D). As long as the line is �nite, facets occur. One could then guess that they a�ect the kinetics, evenfor T > TR = 0.Our main conclusion is that equilibration of an island's shape is a non-universal process, in which the time evolutionof the shape does not obey scaling, while it strongly depends on temperature, and thus on system-dependent featureslike the energy scale E. Scaling relations can be found for the relaxation (or equilibration) time, as a function oftemperature and island size. Indeed, two regimes with two di�erent scaling forms are born out by the simulations,at high and low T , respectively. We tentatively attribute these two regimes to the absence and presence of facets,respectively. II. MONTE CARLO AND CONTINUUM APPROACHA. Kinetic Monte Carlo simulationsWe perform \standard" kinetic Monte Carlo simulations on a triangular lattice. We assume that the potential energyof an atom is proportional to its number of neighbors, and that the kinetic barrier for di�usion is also proportionalto the number of initial neighbors, regardless of the �nal number of neighbors, i.e. after the jump (see Fig. 1).This is of course a huge simpli�cation, which is however aimed here at describing the global evolution of a modelisland. In other words, we do not wish to study any particular system but rather to investigate properties whichshould not depend on the details of atom-atom interaction. Therefore, we use a simple kinetic model containing asfew parameters as possible (only one, the ratio E=kBT where E sets the energy scale (E = 0:1 eV throughout thepaper), kB is the Boltzmann constant and T the absolute temperature). Comparing with recent ab-initio calculations[8] for the Al(111) surface, we note that our one-barrier assumption does give the good order of magnitude of therelative jump frequencies for the di�erent hopping processes of interest here. We also exclude any explicit \Ehrlich-Schwoebel" barrier [18] for atoms hopping around corners, although the occurrence of atoms with a single neighboris treated in a special way (see below). The kinetic barriers for some jumps are shown in Fig. 2. In the same spiritas ours, a similar but slightly more complicated model has been used recently by Metiu's group with the scope ofobtaining system-independent information on island di�usion on a surface: these authors investigate the existence ofa \universal" size dependence of the island di�usion constant. They conclude that such universality is not observed,and we observe a similar phenomenon for island equilibration.The time evolution of the island shape is obtained by the following algorithm. We �rst calculate the followingquantities : �1 = exp[�E=(10kBT )], �2 = exp[�2E=(kBT )] and �3 = exp[�3E=(kBT )] which represent the relativeweights for the jump probabilities for atoms with respectively 1, 2 or 3 neighbors (atoms with more neighbors simplydo not move : see an explanation of the precise forms of the di�erent �i below). Then, in each iteration, we calculatethe probability to move an atom with i neighbors as :pi = (6� i)ni�iP3i=1 (6� i)ni�i (2.1)2



where ni is the total number of atoms having i neighbors. We choose randomly one of the atoms with the appropriatenumber of neighbors and move it in a random direction. The time is increased at each iteration bydt =  �0 3Xi=1 (6 � i)ni�i!�1 (2.2)where �0 is a Debye frequency (we have taken �0 = 1013s�1). To check that the law of detailed balance is satis�ed,one can refer to Fig. 1 : the probability for an atom to jump from a site having n neighbors to a site having pneighbors is �n while the opposite transition has a probability �p. Their ratio is �n/�n = exp(�E=(kBT )(n � p)),i.e. equal to the energy di�erence of the initial and �nal con�gurations, as required by the law of detailed balance(the particular case when n or p is equal to 1 can be analyzed in the same way). This algorithm is very fast [19{21]since all iterations contribute to the evolution (there are no rejected moves). One peculiarity of this model is thetreatment of atoms having one single neighbor: �1 is much larger than what one could expect from the general rule�n = exp[�nE=(kBT )]: indeed, we let �1 = exp[�E=(10kBT )] instead of �1 = exp[�E=(kBT )]. This is to ensurethat singly-bonded atoms, which are in some sense in a \transition state", rapidly go into some physically reasonableposition, i.e. one having 2 or more neighbors. Note also that detachment of atoms from the islands is forbidden here:equilibration is only due to mass transport along the island contour. This is clearly di�erent from Ostwald ripeningwhere islands evolve in local equilibrium with a two-dimensional adatom gas. We note that a recent experimentalstudy by Stoldt et al. [22] has shown that supported Ag two dimensional islands do indeed relax via atomic di�usionon the island edge, without signi�cant contribution from exchange with a two-dimensional adatom gas. A last remarkon the algorithm used here : we do not allow atoms having more than 3 neighbors to move. In some sense, they havean in�nite potential energy. Since our potential energy is not very realistic anyway, this hypothesis allows to simplifyand accelerate the simulations. The key point is that our results are particularly interesting at low temperatures,where including the possibility for atoms with 4 neighbors to jump would make no signi�cant di�erence in the kineticevolution of the island because at these temperatures their jumping is vanishingly small.B. Continuum approachA complementary approach at predicting the evolution of a crystal shape at a temperature higher than the rough-ening transition, consists in coarse-graining the crystal pro�le, in order to treat it as a smooth function h(x; t), andin writing down its time evolution in the form of a partial di�erential equation, whose form depends on the physicalsituation of interest. The situation when matter transport is assured by adatom di�usion along the surface, has beenoriginally considered by Mullins and coworkers [9], for studying small deformations of an in�nite planar surface. Thecase of a �nite, closed "surface" | the island contour | is somewhat more subtle, and we give the derivation in somedetail. The evolution equation has in general then the form of an equation for K, the curvature as a function of thecurvilinear coordinate or arclength. For a closed geometry it not convenient to use the Cartesian coordinates. Indeedbecause the curve is not uni-valued, the slope may be in�nite, and a numerical analysis becomes quite elaborate toprevent that. Thus we have adopted an intrinsic representation of the curve in terms of the curvature as a function ofarclength. It can be shown [23] on purely geometrical grounds that the curvature obeys the following general equation@K@t = � � @2@s2 + K2� vn + @K@s vt (2.3)where vn is the normal velocity of the interface, and vt the tangential velocity. The former is �xed by the physicsof the problem, while the latter is a gauge and is �xed only by the parametrization of the curve [23]. Indeed supposethat the curve is displaced in the course of time in the vertical direction, the discretization points along the curve canbe transported laterally without any change of the shape. This transport is ensured by the tangential velocity. Wecan thus choose the tangential velocity in a convenient manner, and this corresponds to a particular gauge. We havefound that it is convenient to choose the parametrization of the curve in a such a way as to keep the relative distancebetween two points on the curve constant. This is expressed as @(s=L)=@t = 0, where L is the island perimeter. Thisentails [23] that the tangential velocity takes the formvt(s) = � Z s0 ds0Kvn + sL I ds0Kvn : (2.4)This equation shows that vt vanishes both at s = 0 and s = L. This simply means that we have to choose a �xedorigin on the curve in order to measure the arclength in the course of time. Using the above evolution equation forK we �nd that 3



@K@t = �( @2@s2 + K2)vn + @K@s [ sL I ds0 Kvn � Z s0 ds0Kvn] (2.5)Gauge problems usually result in nonlocality. Indeed if at any time one wants to keep the relative distance constant,we must know how all other points on the curve are redistributed, and this induces nonlocality. This mathematicalsophistication replaces, so to speak, the intervention of the operator in the numerical scheme, and there is no needto have a plenty of controls on the redistribution of points as would be the case in a Cartesian representation. Thisalso prevent (spurious) slope 'divergences', since in intrinsic coordinates everything is well behaved. In other terms,the mathematical scheme presented here is very powerful; an automatic tangential transport of representative pointsis ensured intrinsically thanks to our gauge-�eld invariant formulation. Along the same spirit, it is known in �eldtheories, for example, that a bad choice of gauges may lead to unnecessary complications, or even to the lack ofprogress.In our case, when edge di�usion is the relevant physical process determining the relaxation of the shape, the equationfor vn must have the form of a conservation equation for the island areavn = �a2@j@s (2.6)where a the depth of the outer layer within which mass transport takes place (one lattice spacing in our case), and jis the mass curent along the perimeter (de�ned as a number per unit time).The edge di�usion current j is given by the gradient of the local excess chemical potential as in Fick's law :j = � ~DakBT @��@s (2.7)where ~D is a (collective) perimeter di�usion coe�cient, and the chemical potential is de�ned as an energy.The excess chemical potential is in turn related to the local curvature K(s) through the Gibbs-Thomson relation:�� = �a2K (2.8)where  is the line tension (that for simplicity is assumed isotropic here) Eqs. (2.7) and (2.8) yieldj = � ~DakBT @K@s (2.9)and the corresponding evolution equation (2.6) is given, in our two-dimensional situation, by:vn = ~Da3kBT @2K@s2 (2.10)Equations (2.5) and (2.10) must be solved simultaneously for the island shape: the results will be shown in sectionIII D. The equilibrium solution vn = 0 obviously is a constant-curvature shape, that is a circle. Also, note thatequations (2.5) and (2.10) are invariant by a rescaling s ! �s, t ! �4t [9], so that the equilibration time of adeformed island of size L is expected to be proportional to L4 or N2 where N is the number of atoms in the island.III. MONTE CARLO SIMULATION RESULTSTo study the inuence of the facets on the coalescence kinetics, it is interesting to study the time evolution of theaspect ratio and the size, as well as the temperature dependence of the equilibration time teq. We recall that teq isde�ned as the time needed for the island to reach its equilibrium shape. In practice, we take teq as the �rst timewhen the aspect ratio � de�ned above becomes less than 1. Each point is the average of several runs (up to 200 forthe smallest islands). A. Island morphologyFig. 3a shows the time evolution of the perimeter of a 6250 atoms island at 500 K (E=kBT = 2:3). It is clear thatthe shape evolution occurs with rough island borders.Fig. 3b shows the time evolution of the perimeter of an island containing 6250 atoms at 83 K (E=kBT = 14). Atthis temperature facets are apparent throughout the evolution.A more precise comparison of the presence of facets at the two temperatures studied above is given in Fig. 4. It isapparent that facets are present at 83 K, in contrast to the high rugosity observed at 500K.4



B. Dependence of the equilibration time on island sizeThe continuous analysis of section II B predicts teq � N2 as a function of the number of atoms N inside the island,for any temperature. Indeed, the numerical solution of the full, non-linear equations (2.5) and (2.10) appears to agreewith this prediction. Fig. 5a shows the size dependence of teq for di�erent temperatures as given by the simulations.The simulation results agree with teq � N2 only at high temperatures. Below 250 K, it is clear that teq increasesslower than N2, and the lower the temperature, the smaller the exponent. One can also notice (Fig. 5b) that the localexponent for low temperatures approaches 1 for the highest island sizes. This is analyzed in Sec. IV where we givean attempt at deriving a scaling relation describing the two regimes. It should also be noted that extrapolating thedi�erent curves for very high values of the island size leads to an apparently absurd conclusion : very large islands doequilibrate faster at lower temperatures. This is a immediate consequence of the higher size exponents found for thehighest temperatures. To avoid a paradox, we must admit that there exist a crossover from high to low temperaturebehavior for a given size that depends on the temperature. Therefore, even at 83 K (highest curve), for large enoughislands, one should recover the teq � N2 regime. The scaling analysis presented below explains this crossover.C. Dependence of the equilibration time on temperatureFig. 6a shows that teq rapidly increases as temperature decreases, in roughly the same way for all the island sizes.The equilibration time is not exactly a thermally activated quantity, since there is a clear curvature in its Arrheniusplots, as shown in Fig. 6b: the local activation energies increase from roughly 0.3 eV at high T to 0.4 eV at lowtemperature. This represents respectively 3 and 4 times the energy needed to break a single bond. A tentativeinterpretation of these values is given below in Sec. IV.D. Precise kinetics of the relaxationWe have seen that the size dependence of the equilibration time obeys the scaling predicted by the linearizedequations only at high temperatures. It is interesting to check whether the full solution of equations (2.5) and (2.10)agrees with the high-temperature behavior of the MC simulations, when no facets are apparent, and the island looksrough and rather isotropic. Fig. 7, where the aspect ratio is plotted as a function of the reduced time t=teq, showsthat no agreement is found, at any of the studied temperatures. Indeed, this is a posteriori not surprising, sincethe MC results do not seem to obey any scaling relation, or maybe only at high temperature, and it is then obviousthat the \universal" description given by continuous equations does not apply. It is nevertheless a little surprisingthat the continuous description, which agrees with simulations in the case of a planar surface above the rougheningtemperature, does not seem to set a limiting behavior valid for very large sizes (N !1), nor to provide the scalingform which seems to appear in the simulation results at high temperatures.We can think of (at least) three explanations of this observation. First, it could be argued that this is an e�ectof the edge tension. Indeed, in writing the constitutive equation (2.10) we have assumed that  is isotropic. This isclearly not the case in the simulations since we take a triangular lattice, and the energy of the facets depends on theorientation. We are currently performing a numerical integration of equations (2.5) and (2.10) including anisotropicline tension to further investigate this point.Second, one could question the adequacy of the continuous treatment to describe the detailed path to equilibrium,even at high temperatures, for small clusters. Indeed, one could argue that the macroscopic concepts of curvature,chemical potential, etc. are not adapted to deal with nanometric objects containing few (less than 10000) particles.Finally, it is possible that the simulations are not adapted to agree with the continuous theory, in the sense thatour interatomic potential is too crude to give a reasonable kinetic path to equilibrium.IV. A SCALING ARGUMENTOur MC results show that two di�erent regimes - at low and high temperatures - can be identi�ed. At �rst sight, thisis surprising since the only occurrence that could separate high from low temperatures is the roughening transition,which, strictly speaking, takes place at T =0 K in 2 dimensions | that is, for a one-dimensional "surface". However,facets do not disappear suddenly as the temperature is raised from T = 0. Indeed, a \persistence length" of facetscan be de�ned as the equilibrium value of the distance between kinks along the step edge. At equilibrium and at low5



temperatures, we can consider an \ideal gas" of kinks, whose density (number of kinks per unit length) is given bythe formula [24] nkink = 2 exp(��W )=a (4.1)where W is the kink creation energy and a the lattice spacing. Indeed, to form kinks one has to take an atom out of thestep edge, and to place it anywhere along the step. On a triangular lattice, in doing so one looses 4 nearest-neighboursbonds, and gains 2. A net balance of 2 broken bonds results. In the process, 4 kinks have been created (each atomcounts for 2 kinks), so that the energy cost per kink isW = E=2 : (4.2)The factor of 2 in (4.1) comes from the fact that kinks always appear and disappear in pairs|in other words twotypes of kinks, positive and negative exist, of equal number. Then, the equilibrium distance between kinks is`0 = a exp(�E=2)=2; (4.3)which diverges as T goes to 0. At a given temperature, a step looks straight (free from kinks) over lengths of theorder of `0. An island is thus bound to look faceted as long as `0 is larger than the island linear size L. Then, theapproximate equality exp(E=(2kBTc)=2 � Lc=a (4.4)gives the \crossover size" Lc (at �xed temperature) or the \crossover temperature" Tc (at �xed size) for thecrossover between the high (rough) and low (faceted) temperature regimes. A comparison with Fig.(5b), where thehigh temperature regime corresponds to teq � N2, while the low temperature regime corresponds to teq � N , showsthat this criterion is not too bad: the formula predicts a crossover temperature for an island of size N = 500 (L � 22)of approximately 240 K, in good agreement with the simulation data. Note that for smaller sizes than about N � 100the simulations do not show a well de�ned low temperature behaviour. We attribute this to the large importance ofgeometric kinks (imposed by the fact that the step closes on itself) over thermal kinks for these small sizes. Indeed,we claim that the low temperature regime is ruled by the equilibration of the spatial distribution of thermal kinks:the initial shape creates a strongly inhomogeneous distribution of these kinks, which then di�use to achieve spatialuniformity, and thus equilibrium. Kinks di�use by emitting atoms, so that we conclude that atom emission from kinksis the limiting kinetic step determining the low temperature behaviour of teq.Based on this assumption, we can give a scaling argument that reproduces well the observed teq as a function ofN and T . The argument is similar to that used by Bales and Zangwill [25] and Pimpinelli et al. [26] to discuss steproughening and smoothening during growth and at equilibrium. Indeed, it amounts to performing a linear stabilityanalysis, and computing the relaxation time of a perturbation of given amplitude and wavelength. For sake of clarity,we start from the discussion of the high temperature behaviour, which is well known from Mullins work.Physically, we assume that there are two ingredients determining the relaxation : the thermodynamical \force"which drives the relaxation (here, the excess curvature) and second, the kinetic factors which determine the rate ofthe equilibration. At all temperatures, curvature e�ects are relevant, but we assume that the kinetics change due tothe presence of facets (or, equivalently, to the low concentration of kinks). The transition takes place, as stated above,when `0 � Lc. Here is the mathematical translation of this idea.A. High temperaturesLet �q be the amplitude of a perturbation of wave vector q of the island perimeter with respect to the equilibriumshape. The curvature e�ect (Gibbs-Thomson) opposes the increase of the deformation. The rate of decrease dependson the appropriate kinetic process which limits transport of matter from high to low chemical potential regions.Let neq be the equilibrium atom density along a reference island edge with the equilibrium shape. Then, at hightemperature, a deformation of local curvature K results in an excess chemical potential �� � q2�q as in equation(2.8). In turn, this creates an excess atom density nexc = neq exp[��=(kBT )] � neq[1 + �q2�q], where � = =(kBT ).Then, edge atoms ow away from the deformation, whose amplitude decreases at a rate proportional to the divergenceof the mass current : _�q � � 1��r2(nexc � neq) � �neq�� q2 � �q2�q (4.5)6



where �� is the typical timescale of the appropriate kinetic process which is responsible of matter transport.A more detailed justi�cation of this expression can be found in Mullins [], Bales and Zangwill [25] and Pimpinelliet al. [26].De�ning the equilibration time teq by writing _�q=1=L � ��q=1=L=teq givesteq � L4 ��neq� � N2 ��neq� : (4.6)Mullins equation is recovered if one assumes that atom edge di�usion limits the kinetics, so that1�� � D : (4.7)The atom equilibrium density can be obtained from the detailed balance at the kinks: Dneq = �kink, where �kink =�0 exp [�3E=(kbT )] is the rate of atom emission from kinks and Dneq is the atom ux to the kinks [27,28]. Thus,neq = �0=D0 exp [�E=(kbT )] : (4.8)Inserting (4.7) and (4.8) in Eq. 4.6 yields, in the limit of high temperatures,teq � 1��0N2 exp [3E=(kbT )] (4.9)This prediction reproduces the teq � N2 scaling of the continuum theory, and it is in very good agreement with thesimulation results obtained at high temperatures both for the temperature dependence and for the size dependence(Fig. 5. Indeed, at high temperature the equilibration time shows an activation energy of approximately 3E (Figs.6), and teq behaves � N2 in this regime. B. Low temperaturesThe low temperature regime sets in, for a given crystal size, when the equilibrium distance between kinks becomesof the order of the linear size of the crystal, and straight step portions appear. The (thermal) kink density thenbecomes a relevant concept. When the crystal is deformed from the equilibrium shape, the kink density is increasedwhere the facets are shrunk, and decreased where they are streched. On removing the constraint, the kink densitytends to equilibrium and seeks spatial uniformity. If the equilibrium facet size is L � N1=2, and a shape deformationof order �` is introduced, the kink density unbalance is approximately �`=L2. Then, the perturbation relaxes as_(�`) � � 1��� � 1 L2 �` � � 1��� 1N �`: (4.10)The relaxation proceeds by moving a whole row of atoms from a short to a long facet; di�usion is fast on facets, andthe process is limited by nucleation of the new row, that is, by the rate of atom encounters Dn2eq. Then,1��� � Dn2eq = �20=D0 exp[�4E=(kBT )] (4.11)Inserting (4.11) and (4.8) in Eq. 4.10 yields, at low temperatures,teq � D0�02N exp [4E=(kBT )] (4.12)Again, the activation energy predicted here is in good agreement with the low temperature limit observed in thesimulations (Fig. 5). The scaling teq � N is less clearly seen in the simulations (Figs. 6). However, the simulationsshow that the lower the temperature, the lower the size exponent, and if N is not too small, teq � N is consistent withour results. When N is smaller than about 100, teq seems to increase faster than linearly. At such small sizes, facetsare always very short, and it is likely that an intermediate behaviour between mass transport and facet nucleationrules the relaxation. 7



C. DiscussionThe scaling argument we propose nicely reproduces the results of our simulations and leads to a reasonable phys-ical picture of the equilibration, consistent with the observed morphologies and kinetics (presence of facets, rapidcompletion of atomic rows . . . ).Even more, our results can be used to estimate the behaviour of the di�usion coe�cient of a cluster as a function ofthe cluster size N � L2, by means of another scaling argument. In order to di�use over a length `, a number of atomsof order `L have to be transferred from one side of the island to the opposite side. The time needed to do this is of theorder of the time teq(L) needed to equilibrate a uctuation of linear size L and mean square amplitude `2 � L=(�)[15]. Therefore, from the knowledge of teq(L) we can know the di�usion coe�cient D(N ) from the Einstein relationD(N )teq(N ) � `2 � N1=2: (4.13)If we assume that our high-temperature result teq(N ) � N2 holds, we �ndD(N ) � N�3=2: (4.14)If we assume that our low-temperature result teq(N ) � N holds, we �ndD(N ) � N�1=2: (4.15)Equations (4.14) and (4.15) can be compared with the results of the simulations of island di�usion of Metiu andcoworkers': on a (001)-type substrate they �nd that the size-dependent di�usion constant D(N ) of 2D islands variesas D(N ) � 1=N1:52 at high temperature, and as D(N ) � 1=N0:62 at low temperature [29]. Of course, di�erentequilibration processes would lead to di�erent teq(N )s and then to di�erent behaviours for D(N ). This might explainthe di�erent results obtained by Bogicevic et al. [30] for islands di�using on a (111) substrate but with energy barriersfor the jumps di�erent from those assumed here.V. SUMMARY, PERSPECTIVESThe relaxation to equilibrium of 2D islands containing up to 20000 atoms shows unexpected features. Our resultsshow that there is no "universal" size exponent for island equilibration, a result similar to that found by Metiu's groupfor island di�usion [30]. We are now studying the case of 3D clusters to check both the scaling of the equilibrationtime with the size of the particle and the precise kinetic path followed to reach equilibrium. This is done by KMCsimulations and an analytical approach.� e-mail address : jensen@dpm.univ-lyon1.fr[1] M. Lagally, Physics Today 46(11), 24 (1993) and references therein; H. Gleiter, Nanostructured Materials 1 1 (1992); Z.Zhang and M. G. Lagally, Science 276, 377 (1997)[2] <URL:http://www.metallurgy.nist.gov/> <URL:http://nanoweb.mit.edu/>[3] M. Fl�uelli, P. A. Bu�at, and J. P. Borel, Surf. Sci. 202, 343 (1988).[4] X. Yu and P.M. Duxbury, Phys. Rev B 52, 2102 (1995).[5] H. Shao, S. Liu and H.Metiu, Phys Rev B 51 7827 (1995)[6] H. Zhu and R.S. Averback, Phil. Mag. Lett. 73, 27 (1996).[7] A. Perez et al, J. of Physics D 30, 1 (1997).[8] A. Bogicevic, J. Str�omquist and B. Lundqvist, Phys. Rev. Lett. 81, 637 (1998)[9] C. Herring, Physics of Powder Metallurgy (McGraw-Hill Book New York, Company, Inc. 1951) Ed. W. E. Kingston; PhysRev 82 87 (1951); C. Herring, Phys Rev 82 87 (1951); W.W. Mullins, J. Appl. Phys. 28, 333 (1957) and 30, 77 (1959);F.A. Nichols and W.W. Mullins, J. Appl. Phys., 36, 1826 (1965); F.A. Nichols, J. Appl. Phys. 37, 2805 (1966).[10] M. Drechsler et al. Journal de Physique 50, Colloque C8, 223 (1989)8
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FIG. 2. Examples of activation energies for di�erent atomic jumps on the island edge. Note that detachment of atoms fromthe island is explicitly forbidden in the simulations.
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(a) (b)FIG. 3. Time evolution of islands containing 6250 atoms at 500 K (a) and 83 K (b). The initial state corresponds to themost elongated con�guration.

FIG. 4. Large facets are present at 83 K (open circles) in contrast with the rugosity observed at 500 K (�lled triangles)11
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