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Phase behavior of a lattice protein model
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We present a numerical simulation of the phase behavior of a simple model for a protein solution.
We find that this system can occur in three phases, namely a dilute liquid, a dense liquid and a
crystal. The transition from dilute-liquid to dense-liquid takes place in the regime where the fluid
phase is metastable with respect to the crystal. We have computed the relative stabilities of different
crystal morphologies. In addition, we have analyzed the “nucleation” of the native state of an
isolated lattice protein. Using a “Ganodel [N. Go, J. Stat. Phys30, 413(1983] to describe the
protein, we show that a first order transition exists between the native and the coil state. We show
this by analyzing the free energy barrier for the coil-to-native transition.20©3 American
Institute of Physics.[DOI: 10.1063/1.1567256

I. INTRODUCTION of both the folding of proteins and of the phase behavior of
proteins in the scope of the cubic lattice Guwdel. After

Many  diseases, such as prion diseaseslescribing the model and the different numerical techniques

(Creutzfeldt-Jakoh*? Alzheimer diseast or cataractare  that we used, we present the folding behavior of isolated

thought to be partly due to the abnormal aggregation of proehains as a function of the denaturant concentration. In the

teins. Aggregation is also a serious problem in many othegsecond part, we present a study of the phase behavior of a

domains such as the pharmaceufiahd food industries.  multiple-protein system.

Understanding and controlling this process is thus of prime

importance. A first attempt to model the phase behavior ofl_ MODEL

protein-like chain molecules has been reported by Gupta

et al® However, it is fair to say that our understanding of A protein is modeled by a self-avoiding chain of length

aggregation is still far from complete. lseqON @ cubic lattice. The Hamiltonian of a system contain-
A protein is composed of a chain of several dozens to ang one or several proteins is

few thousands of amino-acitisind there are 20 different 1

types of amino acids. This makes the number of possmle H=> _ 2 €Tt 5 > 2 € i (D

sequences huge. Only a small fraction of all possible se- ko >l k#k' Tkl

quences occur in nature. The biological function of a proteinamino acids are labeled according to their position in the

depends on its ground state conformation; a protein or, morgequence: amino acig is theith amino acids of the protein

generally, a heteropolymer can have many conformations. IR, The first term in Eq(1) refers to intramolecular interac-

poor solvent conditions, a protein folds into a unique confor-jons; only interactions between nonconsecutive amino acids

mation which depends only on the sequence of amino acids; the chain are taken into account. The second term in Eq.

the native state. In contrast, most heteropolymers do not hav@L) deals with intermolecular interactions-rkjk, =1 if amino

a unique pative state. The native state of a protejn is thﬁcidsik and j. are neighbors on the lattice, O otherwise.

conformation that has the lowest free energy. In lattice mod[eij] is the interaction matrix which gives the interaction

els of proteins, the native state is the conformation with theenergy between amino acid numbeandj. The Gomodel
lowest ?o"tentlal energy. at . _ _ specifies the interaction energies between different amino ac-

As fully atomistic simulations of proteins are very time- jqs of the same protein in such a way that the native state is
consuming, many numerical studies of proteins i[gz_ake use Qiniquely favored: native contacts have an attractive interac-
coarse-grained models. Among these, ther@mlel "is of-  jon energye<0, whereas all others possible contacts have
) ) ) 1€ MaiN a%5 interaction. Concerning the intermolecular interactions,
pects of the protein folding: An alternative description is e assume that they are identical to those of individual pro-
baseg on the so-called HP model, |n. which amino acids Afeins; residues that attract inside a protein also attract if they
co:mdered tohbe of two typishonflyl. hydr?pholﬁlllft) and 45 not belong to the same proteins and moreover, we assume
polar (P). For the description of the folding of small proteins, .+ equivalent residues in different proteins also attract with
the Gomodel has been shown to reproduce the qualltatlvean interaction energy: e; = e for 1<i<l

. . e - Cii —1=lseq

behawc;]r significantly better than the Hthoél%(lj. _ Calling n the number of intra- or intermolecular bonds,

In the present paper, we present a thermodynamic study,e parition function of the system has a very simple form,

¥Electronic mail: combe@amolf.nl 7= 2 e NelkpT 2
YElectronic mail: frenkel@amolf.nl config
0021-9606/2003/118(19)/9015/8/$20.00 9015 © 2003 American Institute of Physics

Downloaded 22 Jun 2009 to 193.49.32.253. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



9016 J. Chem. Phys., Vol. 118, No. 19, 15 May 2003 N. Combe and D. Frenkel

0
e 3r
w ol
B2k -1
Y oL
A 2
0 =<
-b
L)
-4
2
1 . ) 1 | L 5
. . . . -6 -4 -2 0
FIG. 1. Three-dimensional representation of the native structure of a short E/kT

model peptide. Native contacts are denoted by dashed lines.
FIG. 2. Average conformational energy of the protein given in Fig. 1 as a
function of the reduced energyk,T. In the inset, the standard deviation of
Here and in the following, “bond” will only refer to amino the energy is presented as a function of the reduced quantity.
acids that are neighbors on the lattice with a nonzero inter-
action energy.
Figure 1 shows the native state of one of the protemqII PHASE BEHAVIOR OF ISOLATED PROTEINS
that we study. This short chain of length 8 will be used in
Sec. IV to evaluate the phase diagram. To be more explicit Before proceeding to simulations of a multichain system,
about the model, the interaction matrix deduced from thatve first analyze the behavior of an isolated protein. As in
native state is homopolymers, a transition from a coil state to the native
state can be induced by changiegFigure 2 shows the av-

e 0 0 e 0O e 0O 2 i
erage and the standard deviati@roportional to the heat
0 e 00 00e€0O0 capacity of the energy of an isolated protein, as a function of
0O 0O e OO0 O O € e/k,T. These curves have been obtained by explicit compu-
tation of all possible conformations of the protein.
e 00 e OO0 OO ) " .

[&]= Figure 2 shows the transition between the native state
0 00 0e€eO0O0 € and the coil state. The maximum of the heat capacity
e 000 0Oe OO provides an indication of the transition temperatugk, T

=—1.71. We stress, however, that the transition is not sharp.
0O e 00 0 0¢€ O )
The heat capacity curve shows that only two states of the
L0 0 € 0 € 0 0 €] chains are present: the native and the coil state. The coil state

In our Simu|ati0nsy we have used a number of diﬁerentCOﬂSiStS of free chains with almost no intramolecular inter-

computational techniques. In Sec. I, for the chain of lengthactions. More specifically, Fig. 2 does not present any molten
8, we have enumerated explicitly all the conformations of theglobule state. This is probably due to the fact that we study
chain. This allows exact calculation of all thermodynamicalextremely short lattice proteins. Longer lattice proteins are
quantities of isolated chains. For longer chains and for th@xpected to exhibit a molten globule state, as in real
work of Sec. IV, we can no longer generate all possible conproteinst’
figurations of the system. In that case, we use Monte Carlo To further investigate the nature of the transition be-
simulations in order to sample the most relevant part of théween the two observed states, we calculate the free energy
phase space. of the system as a function of the number of native bonds.
In the Monte Carlo simulations, we used both “local” More precisely, we define a reduced partition function and a
moves (corner move, crankshaft move, end move, reduced free energy depending on the number of native bond
reptation’®>~1® and global moves using the Configurational- No-
Bias Monte Carlo algorithff to generate different confor-

mations of the proteins and thus, different configurations of  z(ng)= 2 S(n—ng)exp(—nelk,T), 3)
the system. Global Monte Carlo moves yield a good accep- config
tance rate at low densitieor the case of a multiprotein F(ng)=—k,TInZ(ny) ()

system and especially for short proteinsut local moves are

more efficient at high densities, and for low temperaturewheren is the number of native bonds adifn—ng) =1 if
simulations of long isolated proteins. We stress that our ainm=ng,, and O otherwise.

is to explore the thermodynamid# particular, the phase Figure 3 shows the free energy divided bgs a function
behavioj of protein model systems. Hence, ttiack of) re-  of the number of bonds for different values @k, T and for
alism of the dynamics generated by our Monte Carlo moveshe chain of Fig. 1. As expected and in agreement with Fig.
is less relevant. 2, the coil state is the most stable state for high values of
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FIG. 4. Height of the free energy barrién units of ) at the coexistence
between the coil and the native state as a function of the protein size. In the

S/sz-] 7] inset, the height of the free energy barrigr units of €) at coexistence is
plotted as a function of the logarithm of the protein size.

-4
in agreement with experimental observations of short
proteinst®
w To determine the order of that transition, we have calcu-
E-4_5— - lated the height of the free energy barrier as a function of the

size of the chains. We evaluate the free energy barriers for
chains of 18, 27, and 48 amino acids. The native states of
these proteins are similar to the one of the short chain al-
ready mentioned, i.e., they are fully compact with rectangu-
lar parallelepipedal18 and 48 or cubic (27) shapes. The
-50 : '1 : é : é : "t — coexistence of the two states can be determined either from
the heat capacity curve or by equalizing the probability of
being in each basin of attraction defined by Figh)3More
precisely, we define the transition state as the local maximum
e/kT=-2.71 of the free energy curvisee Fig. 8)], and we calih,,sthe

nbond

2 — number of bonds in this stafe,,,<3 in the case of Fig.
3(b)]. The coexistence between the coil and native state is
then given by the equality of the probabilities to be in each
basin,

_3_ B nativ i

E?;r%nz(l) 2:La'}tansZ(l)
w : = . , 5
| - Sivez(i)  Zimvz(i) ©

4+ - wheren,ive Is the number of bonds in the native state and
Z(i) is given by Eg.(3). We then define the free energy
barrier from the ratio of the probability to be in the transition
state on the probability to be in one of the basin,

_ I [ N B!

50 1 21’1 3 4 5 —BAF_ Z(Nirang 6)

bond sz (i)
FIG. 3. Conformational free enerdin unit of €) of the chain of length 8 as Figure 4 shows the variation dfF/e as a function of

a function of the number of native bonds. The plot is given for three differ-

ent values ok/k,T. the size of the proteins. This plot shows clearly that the free

energy barrier increases as the size of the chains grows. A
linear regression of the curve shows that the free energy
e/k,T, whereas the native state is more stable for low valuebarrier increases as 0.2D.01 times the size of the proteins.
of e/k,T. At the transition, the free energy landscape exhib-f we assume that observed chain-size dependence persists
its a free energy barrier. for longer chains, this observation suggests that, in the Go
The Gomodel thus shows a two state behavior which ismodel, the coil-native transition is first order.
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As can be seen in Fig. 3, the free energy barrier for 1 T .
folding depends on temperature. Dynamical simulations by
Gutin et al1° show that the minimum folding time as a func-
tion of the temperature increases as a power function of the
size of the chains. However, these results cannot be com-
pared directly with our data for the temperature dependence
of the free-energy barrier, as folding rates depend both on the
barrier height and on a kinetic prefactor. Nevertheless, if we
assume that the folding time has a simple, Arrhenius-type
dependence on the folding barrier, then we can determine an
“effective” power law that describes the dependence of the
minimum folding time on chain size. In doing so, we obtain
an effective exponer between 2.2 and 3.@he appreciable
uncertainty is due to the fact that a power law does not pro- 5 1
vide a good description of our dataNevertheless, these Density
rough estimates are consistent with the result of Getial.
(N=2.7). (See the inset of Fig. 4 for a plot of the free energy
barrier as a function of logarithm of the size of the chains.

Probability
o
9]
|

FIG. 5. Density histogram foe/k,T=—1.10. The three curves correspond
to u/ky,T=—17.7(diamond),—16.5squarg, —15.3solid line).

IV. PHASE BEHAVIOR OF THE MULTIPLE-PROTEIN grams are shown in Fig. 5. The density histograms show the
SYSTEM presence of three phases that we will respectively call “gas,”
A. Simulations “liquid,” and “solid.” Phase coexistence occurs for those

_ values ofu/k,T where the area of each of the two peaks in
We study the phase behavior of a system of many PrOfhe histogram are equal. An example of such a two-peaked

teins. Since we perform simulations on a lattice, neither th%istogram(for wlk,T=—16.5) is shown in Fig. 5. We have
congtant-NET MC, nc;]r the G'b?’s ?nsemble method are hahsed the multiple-histogram reweighting technitjue esti-
tractive options. Rather we simulate our system in thgp e the density histograms at intermediate valugs/kfT.

Grand-Canonical l@VT)d ensgmbltle. we ufsed parallel \ye herformed simulations for a dozen different values of
tempering to speed up the relaxation of our systems. i T and for six values of/k,T.

Usually, the parallel tempering technique simulates systems We stress that the above scheme to determine phase-

a_t different temperatures, exploiting the fact that system_s Aoexistence works for the liquid and vapor phase, but not for
high terrblperature_s m?]y easily cross bfree ene(;gf?’ barrler§he solid phase. We therefore determine the liquid—gas coex-
Hence, by swapping the temperature between different Sysgionce from the density histogram and use analytical esti-

tems, all local minima of the energy landscape are accesy,ias of the free energy of the solid to estimate the freezing
sible. We have chosen a slightly different procedure; our sys-

tems have the same value efk,T but different values of curve.

ulkyT. The idea behind this choice is that free energy bar-

riers usually depend on the value @fk,T. For instance, the B Phase diaaram
probability to nucleate a dense phase in a dilute phase is very 9
high at highu/k, T (high supersaturationwhereas it is very To locate the coexistence between the solid anddie
low at a smaller value ofi/k,T. Thus, swapping configura- lute) vapor phase, we estimate the grand partition function of

tions with different values oj./k, T also allows us to over- the gas and of the solid analytically. The conditions of coex-

come free energy barriers. istence are given by the equality of the pressure, of the
We perform the simulation on a system of lattice pro-chemical potential/k, T, and ofe/kyT.
teins shown in Fig. 1 in a 88X 8 lattice with periodic In our simulations, we found several possible morpholo-

boundaries. We stress that these proteins are very short, gges of fully ordered solids. The structures of these three
much so that one should expect that this model may missolids are represented in Fig. 6. In all three structures, each
some of the features of real protein solutions. The choice ofamino acid” is bound to a maximum number of neighbors
such short model proteins was based on a compromise bé4 neighbors for amino-acids in chains, and 5 for both gnds
tween what is desirable and what is feasible. Tests showed The first solid Fig. 6a) consists of proteins in their na-
that systems consisting of longer proteins got stuck in glasstive structure. One can however note that the iGodel is
stateq(at least on the time scales of our simulatipasd this  peculiar since the native state of the protein is in fact degen-
prevented the determination of the phase diagram for sucerate; both the shape given in Fig. 1 and its mirror image are
molecules. While short chains may provide an oversimplifiedallowed. This is not the case in real proteins because of the
picture of proteins, we stress that our model proteins retaichirality of the alpha carbon of the peptide-chain. However,
the two-state behavior that is one of the main aspects of ththis peculiarity of the Ganodel is exploited in the solid of
folding of the Gomodel. In order to determine the phase Fig. 6(a). We should stress here that this solid is not specific
diagram, we recorded the density histogram of each systeto the protein we have chosen; every protein with a compact
in the parallel tempering simulation. Typical density histo-native state can form this kind of solid within the scope of
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/ conformation. This solid is more likely to be specific to the
/ protein we have chosen. In the following, we will call this
h

solid the “S” solid.

The third solid Fig. &) is made of fully stretched pro-
teins. In this solid, the number of intermolecular bonds is at
a maximum, whereas there are no intramolecular bonds. This

Z
— Lo
°
Z

o solid is also not specific to our choice of protein. In the
following, we will call this solid the “stretched solid.”
To compare these three solids, we calculate their free
/ energies. LetN;,;» be the number of intramolecular bonds

per chain andN;,, the number of intermolecular bonds that
one chain can create with its neighbors. For the native solid,
Ninra=5 andNje,= 24, for the S solidNjya=3 andNiyier
=28 and for the stretched solid,;=0 andN;e=34. The
energyU, of a perfect crystal of volum® =Nl is

N.
/‘ Up= N( o+ Nimra) €, )

(@)

2

whereN is the number of proteins of lengtly,qin the con-
sidered piece of the perfect crystal. One can easily see that
the three solids mentioned above have exactly the same in-
ternal energyd,=17Ne; as already mentioned, each amino

\

d d acid is bound to a maximum number of neighbors. The
Grand partition functiorg of a crystal withN proteins could
/ / be written
() Eooig=e PPN 1+ b1+ ¢yt by -] (8)

The termsg; refers to the crystal with vacancies. One can
then calculate each term,

(1)1: Neﬁ[(NinlraJrNimer)E*l’«]:Né", (9)
where
g: e.B[(NintraJr Ninter) €= #] . (10)

Indeed, each time a vacancy is produdsglyz+ Niner bONds
. .. % % % . are broken, and there ai different ways of leaving a pro-
tein. We have assumed that all proteins stay in their native

.. . conformation in the solid. We then underevaluate the number

of conformation and thus the entropy. Nevertheless, these

terms should not have a significant contribution, since, as we

will see later, the main contribution in the free energy comes

from the ground state.

The term®, must involve both cases when the two va-
cancies are not neighbors and when they are. To simplify the
calculation, we will assume that the second contribution is
negligible.®, then takes the simple form,

N(N—1)
— 2
= 11
© 2 21 (13)
FIG. 6. Morphology of three possible crystal structures. A sphere denotef\nd then, from this assumption, we easily find that the term
the first monomer of the chain. ®, is

k

N! ‘

the Gomodel. In this solid, the number of intramolecular d)k:ik!(N_k)! & (12)
bonds is maximum. In the following, we call this solid the
“native solid.” We can then calculate easily the grand partition function

The second solid Fig.(B) is made of proteins in an “S” from Egs.(8) and(12),
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N
E solid= e—[suowwgb Dy (13

=g Aot BuN(14+ N, (14)

The grand potential and the pressure in the solid are

1 [
Jsolid= — g In =gl (15
J
Psolia= — v (16)
_ 1 ( Ninter )
_Blseq Bu—p T + Ninyra| € 17
+In(1+). (18

Thus far, we have neglected the fact that in that changing
the orientation of one molecule without removing it, is also
an excited state; it involves breaking the intermolecular
bonds$! but not the intramolecular ones. Calling,,, the

N. Combe and D. Frenkel

N

N!
Egas: “~ nl(N——n)' (I sechonfom(ﬁe) eﬁﬂ)n (25
=(1+ Iseqzconform(,BE)eB'u)N- (26)

In Eqg. (26), n is the number of proteins in the system.
From Eq.(27), we deduce the grand potentihland the
pressure of the gas,

1
Jgas: - Eln = gas (27)
N B
== Eln(l"' Isechonform(,BE)e "), (28)
‘]gas 1 —
Pgas_ - v - BN—Iseqln —~gas (29)
1 B
:| cﬁ In(1+|secqzconforn1(ﬁ6)e #). (30)
se

From Eqgs(25) and(31), we deduce the criteria of phase
coexistence,

number of possible orientations that break the intermolecular

bonds of one protein in the latticeNf,,=5 for the native
solid, N,+=3 for the S solid, andN,;=1 for the stretched

solid), the grand patrtition function then becomes
N N
Esolid: e_BU0+B’uNk20 Chgk 240 C;\l—kNiotejBNi“te’e )
(19
where we have used the notati@h=N!/j!(N—j)!,

N
Ecoig=€ PUo AN Y CREK(L+ N p@lfNimer)N=K  (20)
k=0

Psoid B€ L) = Pgas(lgfyﬁ/i)r (31

which, for a given value oBe permits us to find the value of
Bu. One can then deduce the values of the densities of each
phase from the following equation@stablished from the
partition function$

1
dsolig™= 1+ NrOteBNinterf—f— @BNinrat Nined €~ B! (32
| €)efr
d set;conforn{ﬁ (33)

% 141 sechonforn{ Be) e’

We calculateZ.qniom{ B€) by the exhaustive computa-
tion of all conformations of the chains.
The full phase diagram is then shown in Figéa)7and

This is exactly the same form as before, provided that Wei(b), where the solid phase is the native solid. The phase

=g PUoTBEN[ 1 4 N, efNiner + (N, (21

replace
(1+ ) — (14 NplNiner+ 0), (22)

so that

N
Jsolid= — E[BM_:BUO_" In(1+ NroteBNimere"' 01, (23

1
P solid= Bleeq [Bu—BUg+IN(1+NelNnec+ )], (24)

diagram shows that the gas—liquid phase transition is meta-
stable. During our simulations, we found direct evidence that
the liquid phase is metastable with respect to the crystal; it
appears to be an “intermediate” state between the vapor and
the solid. Of course, our estimate for the gas—solid coexist-
ence will be incorrect at high vapor densities. While this will

change the high-temperature solid—vapor transition curve, it
will not affect our conclusions regarding the metastability of

the gas—liquid phase transition. In fact, this phase diagram is
in qualitative agreement with the protein phase diagram

From Egs.(24) and (10), we can easily check that the found both in experiments and in theoretical studfes.
main contribution of the free energy comes from the internal
energy of the ground state. The logarithm term is negligible
compared to the energy term. . _ V. DISCUSSION AND CONCLUSION

We now calculate the grand partition function and the
pressure of the dilute gas. We assume a perfect gas of protein We have presented the calculation of the phase diagram
of lengthlsqin @ volumeV=NIlg, whereN is the maxi- of both isolated chains and multiproteins systems in the
mum number of proteins in the volume. Provided that pro-scope of the Ganodel. The study of isolated chains shows a
teins do not interact in the dilute gas phase, their conformatwo states behavior: the coil and native conformations. We
tional partition functionZ .ol B€) is the same as for an have shown that, as the chain lengths increases, the transition

isolated chain.
The grand partition functio y,sis

between these two conformations tend to a first order transi-
tion.
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T T ' state is 6.3%, whereas it is 11.6% in the liquid. Thus, event
-0.81 - though the notion of partially folded chain is, in the present
case, ill defined, as our chains are very short, the average
number of intramolecular bonds per chain is higher in the
liquid phase than for the isolated proteins. We can therefore
L | conclude that the liquid phase, is composed of partially
§ folded proteins. This observation is in agreement with previ-
@ -1 7 ous observations on a two-dimensional model system.
1 Moreover, as the transition between the coil and the native
ik g O% ] state of isolated proteins occurs fatk,T=—1.73, the lig-

: uid phase stabilizes some conformations partially folded that

I 1 would not be stable for an isolated chain. The effect of den-

. L . sity on folding is even more striking in the solid. We find that
0 0.5 1 crystallization drives proteins either to their native conforma-
density tion, or to another, very specific, conformati@n our case,

(a) S-shaped or linearWithin our model, the three solid struc-

| ' tures have almost the same free energy and we have actually

observed in the simulations that a spontaneously formed
solid is a mixture of the “native” solid and of the “S” solid.
We have not observed spontaneous formation of “extended
-16 7] chain” crystals. The absence of extended chain crystals could
@M either be due to kinetic factorgas in the case of

o
\O
I
1

_—
o
T
!

§ homopolymer®), or to finite size effects. However, in larger
=-18 system we also did not observe the spontaneous formation of
extended-chain crystals. This suggests that, even for very
short chains, kinetic effects are important in determining the
220 crystal structure.

Thus far we have assumed that the strength of intermo-
lecular interactions is equal to that of intramolecular interac-

1.2 ‘ _1'.1 ' 1 tions. This is clearly an oversimplification: one would expect
e/kT that the interaction between hydrophilic surface groups on
(b) different molecules would be rather weak. The more so as, in

real proteins crystals, some water still separates the protein
surfaces, whereas the hydrophobic effect leads to an expul-
sion of water from the protein core. On the other hand, one
might expect to observe strong intermolecular interactions
between the hydrophobic residues in two unfolded proteins.
The calculation of the phase behavior of a three-To explore_the effect of a.change. in the relative strength of
inter and intramolecular interactions, we have performed

dimensional system consisting of many, proteinlike chain limi imulati ith dified int lecul
molecules, is extremely demanding, even for the presen[some prefiminary simufations with modified intermolecular

highly simplified, model. This may well explain why, to our Interactions. The main effect of these changes appears to be

knowledge, no such simulation has been reported thus ff/N overall vertical shift of the computed phase diagram; in-
(see, however, Bratket al25 and Smithet al,?® where they creasing the strength of the intermolecular interactions stabi-

respectively, simulate 6 and 4 proteins but using a bidimenl-Izes t_he denser phases. o
sional lattic&?"28 or a intermediate resolution modeDur It is clear that the Gonodel represents an oversimplified

multiprotein model exhibits three phases: vapor, liquid, andPicture of a system of proteins. Nevertheless, it allows us to

crystal. However, the liquid—vapor transition occurs at areproduce some of the qualitative features of real protein

temperature below freezing. In the gas phase, the protei
hardly interact, although dimers are sometimes observed, d , o )
y g curve. One serious drawback of the simple @odel is that

ending on the density. . . . o
P g Y Fhe molecules are nonchiral. This results in unrealistic crystal

The liquid phase is a disordered structure consisting o ruct that f th i tate. | der to studv th
partially folded proteins. To analyze the molecular conforma-Structures that favor the native state. In order fo study the

tions in this phase, we compared the probabilities to find possible aggregation of unfolded model proteins, it would be
intramolecular bonds in an isolated chain and in the “quidnece_ssary ;? ef“p"’y a model that does not possess such a
phase. We found that proteins in the liquid phase are slightl)§purlous reflection symmetry.
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