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�Received 12 September 1997; revised manuscript received 1 December 1997�

Thin films are usually obtained by depositing atoms with a continuous flux. We show that using a chopped
flux leads to different morphologies or growth regimes. For example, growth cannot be simply understood by
replacing the chopped flux by its average �or instantaneous� value and using the usual growth theories:
different regimes appear, and in one of them the diffusion constant has no effect on the saturation island
density, contrary to what is observed in all theories with continuous fluxes. We present a simple scaling
analysis to predict how the island densities change as a function of the frequency of the chopped flux in several
growth regimes: irreversible aggregation with mobile islands, reversible aggregation �critical island size
greater than 1�. These predictions are confirmed by computer simulations. The model is useful to study growth
over a larger range of growth conditions, especially for the growth of thin films prepared by pulsed sources.
�S0163-1829�98�05524-6�

The technological importance of thin films has given im-
petus to an intense effort for understanding their growth
these last 30 years. One of the main characteristics of growth
in usual deposition conditions is that the structure of the
deposited films is to a large extent determined by kinetic
factors, as opposed to thermodynamic equilibrium. This
complicates the analysis of the growth since one cannot sim-
ply try to find the state of lowest free energy. Instead, it is
necessary to follow in detail how atoms behave after reach-
ing the surface and how they incorporate into the film. A first
step in this direction was first accomplished by Zinsmeister1

using a mean-field approach to establish rate equations of
growth. Further help originated from two technological de-
velopments: experimentally, scanning tunneling microscopy
permits now to check atomic models of growth by giving
images of the growing film at the atomic scale2–4 and theo-
retically, rapid computer simulations are now feasible to in-
vestigate the effects of given atomic processes.5,6 While this
kinetic control of the film structure complicates its study, the
advantage is that one can ‘‘play games’’9 with the different
growth parameters �incident flux of particles, diffusion coef-
ficient of an adatom, etc.� in order to obtain different film
morphologies. A simple example is given by the quantity of
islands grown on a perfect substrate at low enough tempera-
tures: it is known that the number of islands at saturation
scales as (F/D)1/3 �Refs. 10–12� where F is the incident flux
and D the diffusion coefficient. Then, by increasing the flux
or decreasing the diffusion constant �by lowering the sub-
strate temperature�, one can adjust the saturation number of
islands grown on the substrate. In this sense, each kinetic
factor is a ‘‘handle’’ on the system, allowing to control the
morphology of the films. We introduce here a new kinetic
handle, which should enable a larger control over film
growth : the chopping of the incident flux. We note that this
flux modulation is intrinsic to other deposition techniques
such as cluster laser vaporization �the laser is pulsed13�. It is
therefore important to understand how growth proceeds in
the presence of a modulated flux if one is to be able to
interpret experiments performed in these conditions. For ex-
ample, one may wonder whether the usual growth

theories10–12 can be used by replacing the continuous flux by
the average value of the chopped flux over a cycle. In the
following, we will show that this is not the case, and that the
growth of the film is profoundly changed by the modulation
of the incident flux. We will analyze growth in two different
limits : the irreversible aggregation limit, including mobile
islands, and the case of reversible aggregation.

The basic idea is that if instead of using a continuous flux
we use a chopped flux to grow a film, the number of islands
formed on a substrate will depend on the chopping frequency
f and on d , the fraction of the period the flux is ‘‘on’’ �see
Fig. 1�. This dependence is due to the fact that the free par-
ticle concentration on the surface does not reach its steady-
state concentration instantaneously, but only after a charac-
teristic time which we will call �m . Then, if the timescale of
the chopping �1/f� is much smaller than �m , the system only
sees the average flux. In the contrary case, everything hap-
pens as if the instantaneous flux was used instead. Then,
there will be a transition from one behavior to the other at a
chopping frequency close to 1/�m .

The basic model studied in this paper includes the follow-
ing: �1� Deposition. Particles are deposited at randomly cho-
sen positions of the surface at a flux Fi during the ‘‘on’’
fraction of a cycle (d�1). During the rest of the cycle, no

FIG. 1. Illustration of the chopped flux.
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particle reaches the surface �see Fig 1�. The average flux
reaching the surface is thus Fav�dFi . �2� Diffusion. Entities
can move in a random direction by one diameter, or one
lattice spacing, which we will take as our unit length. We
denote by � the characteristic time between diffusion steps.
�3� Aggregation. If two adatoms come to occupy neighboring
sites, they stick to form an island. This is the basic model
that we will study in two limiting cases.

First, in the limit of irreversible aggregation, we suppose
that monomers cannot detach from islands and cannot dif-
fuse on the edges of islands, but we allow islands to move:
the case of immobile islands has already been studied in a
previous paper.14 More precisely, we only allow islands of
size smaller than imax to move, and their diffusion coefficient
is inversely proportional to their mass6 �i.e., its number of
particles� as discussed below. The inclusion of island mobil-
ity is motivated by the fact that many researchers have sug-
gested that island diffusion can be an important process in
film growth.12,15–17 It was therefore important to include this
possibility in the model. One could argue that island diffu-
sion occurs via atomic diffusion along the island edge and
that moving the islands as a rigid entity is not realistic. How-
ever, the precise mechanism of island diffusion is not impor-
tant here, and we only need to know how fast islands can
move. The only possible problem is that islands moving by
edge diffusion are compact, whereas our islands remain
ramified, but this is not important for small islands �in the
present study the largest clusters allowed to move contain
seven sites�. Concerning the size dependence of the island
diffusion, in the absence of any universal law observed ex-
perimentally �the laws vary from DN�N�0.5 to DN�N�1.5

depending on the precise diffusion mechanisms7,8� we
choose a reasonable inverse mass law. Since we only aim at
obtaining scaling laws, the detailed value of this exponent
should not be critical.

The effects of island mobility for irreversible aggregation
are studied in next section. Section II deals with the opposite
case of reversible aggregation where we suppose that every
particle can move with a probability which is an exponen-
tially decreasing function of its number of neighbors.18 This
means that islands can break up, which is the most common
situation experimentally, as soon as the growth temperature
is not too low, and that diffusion on the island edge is al-
lowed. Thus, including both irreversible and reversible ag-
gregation allows to have a broad view on many different
experimental situations.

I. IRREVERSIBLE AGGREGATION

We start with the simplest case of irreversible aggregation
and immobile islands (imax�1). This situation has been ana-
lyzed previously14 and we only summarize here the main
results. The analysis is simple because the only ‘‘active’’
particles for island nucleation are the monomers and there-
fore the only relevant time scale is the time during which the
monomers can nucleate a new island, which is the same as
the time between their deposition and their incorporation into
a pre-existing island.19 Since, in the absence of evaporation,
the monomers disappear mainly by diffusing randomly until
they aggregate with an island,10 their mean lifetime on the
surface is given by �m�l2/D where 2l is the mean distance

between islands and D the diffusion constant of the mono-
mers. We obtain �m�1/(DN) where N is the island concen-
tration. We can predict three regimes of behavior, depending
on the relative magnitude of �m , d/ f and 1/ f .

For low chopping frequencies (�m�d/ f ), the monomer
concentration reaches its steady-state concentration �ss

�Fi�m almost instantaneously in the time scale of a period.
After the flux is turned off, the monomer concentration goes
back to 0 also almost instantaneously (�m�d/ f �1/f ). Then,
between two successive ‘‘flux on’’ periods, nothing happens
since only the monomers can move, and there is no monomer
left. Therefore, growth proceeds as if we had a continuous
flux Fi and the island concentration at saturation for low
frequencies Nsat

l f satisfies the well-known result Nsat
l f

�(Fi /D)�, with ��0.36 for fractal islands.10

We then cross to the regime of high frequencies (�m

�1/f ), where many deposition cycles are carried out during
the monomer equilibration, and the system only sees the av-
erage flux Fav�Fid . Then the island concentration at satura-
tion for high frequencies Nsat

h f satisfies Nsat
h f �(Fav /D)�

�d�Nsat
l f �Nsat

l f .
In the intermediate case (d/ f ��m�1/f ), a more complex

analysis must be done and one obtains Nsat�(Fid/ f )1/2.
Computer simulations14 are in very good agreement with

these predictions.

A. Scaling laws „imax�2…
In this section, we will try to make some predictions for

the growth in the different regimes in the case imax�2: only
monomers and dimers can move. We show that introducing
dimer motion changes the exponents in the three regimes
evoked above. It is already known that the motion of the
dimers changes the scaling laws from the case imax�1 in the
case of a continuous flux.10,15,17

Let us call �1 the monomer concentration, �2 the dimer
concentration, N the island concentration, D1 the monomer
diffusion coefficient, and D2 the dimer one. We will assume
that D1 and D2 have the same order of magnitude but are
different. As in the case imax�1 �immobile islands�, we call
f the frequency of the chopping flux and d the fraction of the
cycle the flux is ‘‘on.’’ We have also to introduce �1
�1/D1N the average time the monomers need to aggregate
on an island, and �2�1/D2N the average time the dimers
need to disappear from the substrate by dimer-island aggre-
gation . Since D1�D2, �1��2.

We can now investigate the different regimes of growth
depending on the relative magnitude of �1, �2, d/ f , 1/f .

For low frequency chopping (�1 ,�2�d/ f ), the monomer
and dimer concentrations reach their steady value almost in-
stantaneously when the flux is ‘‘on’’ and vanish instanta-
neously when the flux is ‘‘off.’’ So, as in the case imax�1,
the system behaves as if the flux were continuous with a
value Fi and the scaling law giving the island concentration
at saturation Nsat is10

Nsat�� Fi
2

D1D2
� 1/5

. �1�
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This equation is valid only when dimer diffusion is high
enough to change island density �see Ref. 10 for a more
detailed analysis�.

For high frequency chopping (1/f ��1 ,�2), as in the case
imax�1 and for the same reasons, the system behaves as if
the flux were continuous with the average value: Fav�Fid .
And so the scaling law is

Nsat�� �Fid �2

D1D2
� 1/5

. �2�

For intermediate regime (d/ f ��1 ,�2�1/f ), we have to
perform a more careful analysis. For this, the usual mean-
field equations are1,10,12,20,21

d�1

dt
�F� t ��D1��1�2�D1�1N��D1�D2��1�2 , �3�

d�2

dt
�D1��1�2�D2�2N��D1�D2��1�2�D2��2�2,

�4�

dN

dt
��D1�D2��1�2�D2��2�2. �5�

In Eq. �3�, the first term of the right-hand size denotes the
flux of monomers on the surface, the second and third terms
represent, respectively, the loss of monomers by monomer-
monomer and monomer-island aggregation, the fourth repre-
sents the loss of monomers by monomer-dimer aggregation,
and take in account motions of monomers and dimers. Equa-
tions �4� and �5� have similar terms.

To solve these equations, we make two hypothesis: we
assume that �1�N and �2��1. This leads to

d�1

dt
�F� t ��D1�1N , �6�

d�2

dt
�D1��1�2�D2�2N , �7�

dN

dt
��D1�D2��1�2 . �8�

Solving Eqs. �6� and �7� during one period �with the con-
dition �1(t�0)��2(t�0)��1(t�1/f )��2(t�1/f )
�0�, and calculating the increase 	Ncycle�
cycle(D1
�D2)�1�2dt of islands during the same time, one finds

	Ncycle��Fid/ f �3
1

N2�1�
d

f �1
�� d

f �1
� 2� 1�

�1

�2
� � . �9�

And since d/ f ��1 ,�2�1/f , we have

	Ncycle
3 ��Fid/ f �3. �10�

The number of cycles done is a function of the surface
coverage � �the number of occupied sites divided by the total
number of sites of the lattice�: ncycle�� f /Fid . We stop simu-
lations when the island concentration reaches its maximum:

we have checked that it occurs for ��0.15 as for the con-
tinuous flux.6,20 So we finally obtain the scaling law for the
intermediate regime:

Nsat�� Fid

f � 2/3

. �11�

B. Computer simulations

We now perform Monte Carlo simulations to check these
calculations. As explained in the introduction, our program
includes the following:6,14,20 Deposition. Monomers are
dropped on the lattice at random positions with a flux Fi
during the ‘‘on’’ fraction of the cycle. During the rest of the
cycle, no monomer reaches the surface. Diffusion. Every is-
land �including monomers� of size smaller than imax can
move in a random direction by one lattice site. Aggregation.
When two islands �or monomers� meet, they stick irrevers-
ibly to form a single island.

More precisely, the algorithm is written in the following
way. Each loop we increase the time by dt�1/D1(FiL

2

�NCluef f), where NCluef f is the number of mobile species
�monomers and islands of size smaller than imax) at that time,
L is the lattice size and 1/D1 is the diffusion time of a mono-
mer from a lattice site to a neighbor. Within this loop, we
perform only one operation: diffusion or deposition.

�i� The probability of moving a particle is NCluef f /(FiL
2

�NCluef f): we randomly choose an island or a monomer
among NCluef f and move it by one lattice site according to its
mobility. In the absence of any systematic law observed ex-
perimentally �see above�, we chose a simple law for the mo-
bility of the clusters: diffusion coefficient proportional to the
inverse of the mass of the island.

�ii� The probability of deposition is FiL
2/(FiL

2

�NCluef f): an empty site of the lattice is chosen at random
and we deposit a new particle there. It can easily be checked
that these probabilities reproduce the physical definitions of
the flux and the diffusion we want to simulate.

We now analyze the dependence of the saturation island
concentration on the chopping frequency. Figure 2 shows the
results obtained for imax�2 on a square lattice for different
values of d �fraction of the period the flux is ‘‘on’’�. We can
first note that the three regimes predicted are actually
present. Moreover, the dependence on the frequency f in the
intermediate regime is in good agreement with the predic-
tion: the solid line is a fit of the (d�0.0001) curve and has a
slope 0.70 whereas the prediction is 2/3. Moreover, we can
check that the ratio of island concentration between high and
low frequencies regimes agrees with the predicted ratio d2/5.

Figure 3 shows the saturation island density as a function
of the rescaled flux (F/D) for different values of the fre-
quency. We can check that in the low- and high-frequency
regimes, the slopes of the curves are in good agreement with
the predicted ones 2/5. Moreover, for intermediate fre-
quency, we can point out three different parts of the curve:
for high and low fluxes, the curves tend asymptotically to-
wards the low- and high-frequency regimes, and for the in-
termediate one, the system is in fact in the regime d/ f
��1 ,�2�1/f , and we can check that the dashed line of slope
2/3 fits the data quite well �a fit would give a slope of 0.62�.
Note that here, the change of regime for the intermediate
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value of f ( f �3�10�5) is not due to a change of frequency
as in the previous figure, but to the decrease of the flux
which causes the decrease of the island density, and then the
increase of the times �1�1/(D1N) and �2�1/(D2N).

In Fig. 4 we show the saturation island concentration as a
function of the frequency for different values of imax . In each
curve, the three regimes are present, and the bigger imax , the
smaller the island density. This is easy to understand since
small islands can aggregate with bigger islands, thus decreas-

ing the total island density. Moreover, the decrease of the
saturation island density leads to an increase of the mean
aggregation time between the mobile species and the islands
(� i�1/Nsat where � i is the characteristic time for the islands
of i particles to disappear from the substrate by aggregation
on islands�, which explains qualitatively the fact that the
transition happens earlier when imax is bigger �the transition
frequency is inversely proportional to this aggregation time�.

II. REVERSIBLE AGGREGATION

The irreversible aggregation limit does not allow particles
to leave an island: this is only realistic when the activation
energy for a particle to detach is higher than thermal energy
kBT .

We will now study a model in which particles are allowed
to leave the islands. We will assume that each particle has a
bonding energy Es with the substrate; and a bonding energy
En with each neighbor. We assume that when a particle
moves from one site to another, the particle goes through a
transition state �Fig. 5� that has an energy independent of the
initial and final states, and which we take as the origin of
energies. Therefore, the activation energy for a particle to
leave a lattice site is Es� jEn , where j is the number of
neighbors of the particle: we assume that only the initial
number of neighbors is relevant. The probability for that par-
ticle to move is taken proportional to e�(Es� jEn)/kBT. This is
a classical ‘‘bond counting’’ model22–24 as recently used by
Ratsch et al. 18 The detailed balance is verified since the ratio
of probabilities satisfies

p1→2

p2→1
�e�[�n1�n2�En]/kBT,

where p1→2 is the probability for going from a state 1 �hav-
ing n1 neighbors� to a state 2 �having n2 neighbors� and
p2→1 is the probability for going from state 2 to state 1.

FIG. 2. Computer simulation of the saturation island density
�obtained for a coverage of 10%� as a function of the rescaled
chopping frequency f d/D . The rescaled flux is Fi/D�10�7, and
each curve corresponds to a different value of d: d�0.1 �diamonds�
�lattice size L�400), d�0.001 �squares��lattice size L�400), d
�0.0001 �circles��lattice size L�1500). The solid line is a fit of the
curve and has a slope 0.70 in excellent agreement with the predicted
slope of 2/3.

FIG. 3. Computer simulation of the saturation island density
�obtained for a coverage of 10%� as a function of the rescaled flux
F/D . The value of d is d�0.01, the lattice size is L�400 and each
curve corresponds to a different value of the chopping frequency:
f �10�1 �diamonds�, 3�10�5 �squares�, f �10�8 �circles�. The
dashed line has a slope 2/3 and the solid line has a slope 2/5.

FIG. 4. Saturation island density �obtained for a coverage of
10%� as a function of the rescaled chopping frequency f /D . The
rescaled flux is 10�7, the value of d , 0.1, the lattice size, L�400
and each curve corresponds to a different value of imax : imax�1
�circles�, imax�2 �squares�, imax�3 �diamonds�, imax�4 �triangles
up�, imax�5 �triangles left�, imax�7 �triangles down�.
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In the next section we will predict the behavior of the
saturation island concentration for this model, including the
presence of a chopped flux.

A. Scaling laws

To be able to perform simple calculations, we assume that
only dimers can split to give two monomers, while all the
bigger islands are stable. This simplification will be shown to
lead to rather good predictions. We can give two plausible
reasons to explain this: first, most particles belonging to
large islands are multiply connected and will therefore not
leave the island as easily as particles in dimers �which have
only one neighbor� and second, the number of monomers
�which our simplification underestimates since we neglect
large island breaking� is in great part determined by the in-
cident flux that is not affected by our simplified treatment.

The equations of the system then become

d�1

dt
�F� t ��D1�1N�

�2

�b
�D1�1

2�D1�1�2 , �12�

d�2

dt
�D1�1

2�
�2

�b
�D1�1�2 . �13�

These equations are almost the same as the ones obtained
for the irreversible limit, but we have added to Eq. �12� a
term of creation of monomers by disaggregation of dimers in
a characteristic time �b �rigorously we should have put
2�2 /�b , but as we are only interested by scaling laws, we
drop all geometrical factors�; �b is related to the probability
of breaking a single bond and therefore is proportional to
e�(En /kT). Also, we have ignored certain process such as the
motion of dimer due to shearing: we expect that such a pro-
cess does not affect the exponent of the scaling laws.

Making the assumptions that �2��1�N and �b�1/F ,
which seems physically plausible if the incident flux is low
enough, we obtain the simplified equations

d�1

dt
�F� t ��

�1

�1
, �14�

d�2

dt
�D1�1

2�
�2

�b
. �15�

To solve these equations, we must take into account the
five time scales d/ f ,1/f ,�1 ,�b ,�N , where �N is the charac-

teristic time of evolution of the islands concentration �since
the typical time needed to reach saturation is a fraction of a
monolayer, an estimate of this time is �N�N/Fi; see also the
preceding section�. We will assume that �N is bigger than all
other time scales. Let’s study what happens as a function of
d and f for the different values of �1 and �b .

In the case �1�d/ f , the monomer concentration reaches
its steady value almost instantaneously:

0�t�d/ f , �1� t ��
Fi

D1N
, �16�

d/ f �t�1/f , �1� t ��0. �17�

And so we can solve Eq. �15�:

0�t�d/ f , �2� t ���bD1� Fi

D1N � 2

�1�e�t/�b�, �18�

d/ f �t�1/f , �2� t ���bD1� Fi

D1N � 2

�1�e�d/ f �b�e�t/�b .

�19�

TABLE I. Scaling law for the different regimes.

�b�d/ f
d/ f ��b�1/f

1/f ��b
�b��1�1��b

�1�d/ f � �b

D1
�1/4

Fi
1/2 � d

D1 f �
1/4

Fi
1/2 � �b

D1
� 1/4

d1/4Fi
1/2

d/ f ��1�1/f ��bD1�
1/2

Fid

f
��bD1�1/2

Fid

f � Fid

f � 2/3 � Fid

f � 2/3

��b f �1/3

1/f ��1 � �b

D1
�1/4

�Fid �1/2 � �b

D1
� 1/4

�Fid �1/2 � �b

D1
� 1/4

�Fid �1/2

FIG. 5. Illustration of the energy landscape as seen by a diffus-
ing particle. The energy barrier for a given jump depends only on
the initial number of bonds (n). This automatically satisfies the
detailed balance �see text�.
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Since N increases each cycle by 	Ncycle�
D1�1�2dt , we
obtain the following scaling laws �the number of cycles is a
function of the coverage �: ncycle�� f /Fid , see the preceding
section�: if �b�d/ f then

Nsat�� �b

D1
� 1/4

Fi
1/2; �20�

if d/ f ��b�1/f then

Nsat�� d

D1 f �
1/4

Fi
1/2. �21�

If 1/f ��b then the dimer concentration has not enough
time to vanish at the end of the period. It reaches an almost
constant value during the period : �2�d�bD1(Fi/D1N)2.
The saturation island concentration becomes

Nsat�� �b

D1
� 1/4

d1/4Fi
1/2. �22�

We can check that these three results are compatible each
other: for instance, if �b→d/ f , Eq. �20� gives Eq. �21�
changing �b by d/ f .

In the case d/ f ��1�1/f , we have to solve exactly Eqs.
�14� and �15� and we finally obtain the following: if �b
�d/ f then

Nsat�� Fid

f � 2/3

��b f �1/3, �23�

if d/ f ��b�1/f then

�1��b , Nsat�� Fid

f � 2/3

, �24�

�b��1Nsat��D1�b�1/2
Fid

f
; �25�

if 1/f ��b then

Nsat�� Fid

f � 2/3

��b f �1/3. �26�

In the case 1/f ��1, the monomer concentration is almost
constant during each period and, since the dimer concentra-
tion is entirely controlled by the monomer one, the dimer
concentration is also almost constant, and then we obtain the
same scaling law for all the cases �b�d/ f ,d/ f ��b�1/f and
1/f ��b :

Nsat�� �b

D1
� 1/4

�Fid �1/2. �27�

This relation is similar to Eq. �28� of Ref. 10
We let the reader check the compatibility of all these re-

sults, which we have summarized in Table I.
This table present all the regimes found, but some of them

are not very physical or unreachable by simulations. For in-
stance, the case 1/f ��1 and �b�d/ f would represent a sys-
tem where particles would leave islands very quickly, and it
would take a very long time to obtain some large islands;
and, moreover, simulations in this case would be very expen-

sive in computer time. On the other hand, in our predictions
we made the assumption that �1 ,�b��N , and we must take
care to stay with in these hypothesis in simulations: one
could show that the case �1�d/ f and 1/f ��b is very hard to
reach by simulations, and we will not see it.

Finally, one can be surprised because in the case �b
→� , we do not find the same results as in irreversible
aggregation;14 in fact, our assumption �b��N forbids �b→
� .

B. Computer simulation

As in the irreversible limit, we use a Monte Carlo simu-
lation, and we take into account only two processes: �i�
Deposition. Particles are dropped on the substrate with a flux
Fi when the flux is on, and no particle is dropped when the
flux is off. �ii� Diffusion. Particles diffuse with a probability
that depends on the number of neighbors. More precisely, the

FIG. 6. Saturation island density �obtained for a coverage of
10%� as a function of the rescaled frequency �a� and the corre-
sponding slope �b�. The value of d is 0.001, the lattice size is
L�600 and each curves correspond to different values of energies
and flux: Es�1.3, En�0.5, Fi/D�10�7�squares�, Es�1.42,
En�0.4, Fi/D�6�10�7 �circles�. The solid lines have slopes
�1/4 and �2/3.
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probability for a particle with j neighbors to move is taken
proportional to e�(Es� jEn)/kBT.

To ensure this, the algorithm is written to have, for each
loop, a probability of depositing a new particle:

Pdrop�
FiL

2�

FiL
2���

i

�6�i �

6
nie

�iEn /kBT

�28�

and the probability to move a particle with i0 neighbors:24

Pi0
�

�6�i0�

6
ni0

e�i0En /kBT

FiL
2���

i

�6�i �

6
nie

�iEn /kBT

, �29�

where ���0
�1eEs /kBT �Refs. 18,24� is the diffusion time for

a particle without neighbors, �0 is a typical vibration fre-
quency (�0�1013 s�1), ni is the number of particles with

i neighbors �we only allow to particles with less than four
neighbors to move�, kB is the Boltzmann constant, T is the
temperature, L is the lattice linear size, and the factors
(6�i) serve to accelerate the algorithm.25

As for the irreversible aggregation, we studied the satura-
tion island density dependence on the chopping frequency.
Figure 6 shows the results obtained for values of En and Es
such that �1��b and �1 /�b�d . We can first check that the
ratio between the island density in the low- and high-
frequency regimes corresponds to d1/2. According to Table I,
by increasing the frequency we should scan successively the
regimes of slopes 0, �1/4, �2/3 �or �1, since �1 and �b are
very close� and finally 0. We can check in Fig. 6 that the
slope of the curve takes successively the values 0, �1/4,
��0.64 and 0, in good agreement with the prediction.

Figure 7 shows the results obtained for values of En and
Es such that �b��1. Here, increasing the frequency should
lead to successive slopes of 0, �1, 0. Figure 7 shows that the
three regimes are present.

In conclusion, these two figures confirm the theoretical
predictions with good accuracy taking into account the ap-
proximations we have done to obtain Table I.

III. CONCLUSION

In this work, we have studied the influence of a chopped
flux in two models of deposition of atoms on a surface: a
model of irreversible aggregation with mobile islands, and a
model of reversible aggregation more adapted for high tem-
peratures.

Mean-field-like equations have allowed us to calculate the
different scaling laws verified by the saturation island den-
sity as a function of the different parameters of the growth.
Several regimes were obtained as a function of the chopping
frequency. These results were checked by Monte Carlo simu-
lations, leading to a very good agreement.

These results are useful for films grown with intrinsically
pulsed beams13 as well as for investigating new growth re-
gimes with continuous sources equipped with a chopper. It
should be noted that chopping the flux permits to act on the
kinetics of the growth just as temperature does but with a
much more specific action, since temperature acts on all ac-
tivated processes.
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