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We present a precise microscopic description of the limiting step for low-temperature shape relaxation of
two-dimensional islands in which activated diffusion of particles along the boundary is the only mechanism of
transport allowed. In particular, we are able to explain why the system is driven irreversibly towards equilib-
rium. Based on this description, we present a scheme for calculating the duration of the limiting step at each
stage of the relaxation process. Finally, we calculate numerically the total relaxation time as predicted by our
results and compare it with simulations of the relaxation process.

[. INTRODUCTION atomic motion was chosen: the aim being to point out the
basic of mechanisms of relaxation, and not to fit the specific
The understanding, description, and control of structure®ehavior of a particular material. The potential enefgyof
at the nanometer scales is a subject of interest from the furén atom is assumed to be proportional to the numbefr
damental and applied points of viévf.From the fundamen- neighbors, and th&inetic barrier E, for diffusion is also
tal point of view, there is a large literatdréconcerning the ~proportional to the number dhitial neighbors before the
growth of crystals and their shape. Yet, while the descriptiofump, regardless of théinal number of neighborsE
of the equilibrium shape is rather clear, the dynamic descrip=—E,=i*E where E sets the energy scaleEE0.1 eV
tion of crystal growth is still not well understood. In particu- throughout the papgrTherefore the probability; per unit
lar, we lack a complete understanding of the time scale§me that an atom withi neighbors moves isp;
involved in the relaxation process, and the mechanisms voexy —i*E/k,T], where v,=10" s is the Debye fre-
which irreversibly conduce the island to its equilibrium quency,kg is the Boltzmann constant anfl the absolute
shape. temperature. Hence the average time in which a particle with
In this work, we study the shape relaxation of two- i neighbors would move is given by
dimensional islands by boundary diffusion at low tempera-
tures. The typical size of the islands we will be concerned
with consists of a few thousand atoms or molecules, corre-
sponding to islands of a few nanometers. The model we con-
sider is the same as the one studied in Ref. 5, where twdhe complete description of the model and of the simulation
mechanisms of relaxation, depending on temperature, wergorithm can be found in Ref. 5, where it was studied using
pointed out: At high temperatures, the classical theory develstandard kinetic Monte Carlo simulations. This simple ki-
oped by Herring, Mullins, and Nichdlsippears to describe netic model has onlypne parameter, the rati&/kgT. The
adequately the relaxation process. In particular, it predictéemperature was varied from 83 to 500 K, and the number of
that the relaxation time scales as the number of atoms to thatoms in the islands from 90 up to 20 000. The initial con-
power 2. However, at low temperatures, the islands spenfigurations of the islands were elongatesadme initial aspect
long times in fully faceted configurations, suggesting that theatio of about 10, and the simulations were stopped when
limiting step of the relaxation in this situation is the nucle- the islands were close to equilibrium, with an aspect ratio of
ation of a new row on a facet. This assumption leads to thd.2. The time required for this to happen was defined as the
correct scaling behavior of the relaxation time on the size ofelaxation time corresponding to that island size and tem-
the island, as well as the correct temperature dependenceerature. Concerning the dependence of the relaxation time
Yet, it is unclear what drives the island towards equilibriumon the size of the island, two different behaviors depending
in this scenario. on temperature were distinguishedt high temperature, the
In this paper we propose a detailed description of thigelaxation time scaled as the number of atoms to the power
low-temperature relaxation mechanism, and identify the2, but this exponent decreased when temperature was de-
event that drives the island towards its equilibrium shapecreased. A careful analysis showed that the exponent tends
Based on our description, we construct a Markov procestowards 1 at low temperature. The dependence of the relax-
from which we can estimate the duration of each stage of thation time as a function of temperature also changes, the
relaxation process. Finally, we use our result to determin@ctivation energy was 0.3 eV at high temperature and 0.4 eV
the relaxation time of the islands and compare with simulaat low temperature. In this context, it is important to define
tion results. what we call a low-temperature: following Ref. 5, we denote
The specific model under consideration consists of twoby L. the average distance between kinks on a infinite facet:
dimensional2D) islands having a perfect triangular crystal- we define the low-temperature regime as that in wHigh
line structure. A very simple energy landscape for activated>L whereL is the typical size of our island, large facets are

mi=vy texi*E/k,T]. (1)
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FIG. 1. Configuration of the island we will consider in the quali-

tative description as well as in the gquantitative one.

then visible on the island. It was shown thdt,
=(al2)expE/2k,T) wherea is the lattice spacing.

The behavior of the relaxation time as a function of the
temperature andll, the number of particles of the island, can
be summed up with two equations corresponding to the high-

FIG. 2. The total energy of the island does not change when one
particle leaves a kink on the small facet to go in the germ on the
large facet.

and low-temperature regimes: librium shape, and yet, we observe that this never happens.
Indeed, sometimes a germ appears on a small facet but it
thtlaxation” EXH 3E/Ky TIN? for N>LZ, (2 eventually disappears afterwards, whereas the appearance of
a germ on a large facet frequently leads to the formation of a
trelaxation” X 4E/K, TIN for N<LZ. (3 new row, taking the island closer to its equilibrium shape.

; - These observations are at the root of irreversible nature of
Replacing the temperature dependent factors by a function %e relaxation. germs only grow and become stable on the

N the crossover island sizewhere No=Loexp@/k,T)], large facet, so the island can only evolve to a shape closer to

these two laws can be expressed as a unique scaling functign =.—. . ; .
. g ilibrium. Yet, there is clearly no local drive for growth on
depending on the rescaled number of partidiésl, : €quilibriu et, there is clearly no local drive for gro 0

large facets nor any mechanism inhibiting growth on small
o N 2 N ones. In order to explain how this irreversibility comes
v

for N—>1 about, we propose the following detailed description of the
Cc

t . mechanism of nucleation and of growth of a germ.
relaxation N )

5 First, to create a germ, two atoms emitted from the cor-
NCN_C for N_c<l ners of the island have to encounter on a facet. The activation
energy required for this event is obviously independent of
so that the relaxation tinfés a simple monotonous function \whether it occurs on a large facet or on a small facet. Once
of N/N., and the temperature dependence is contained ithere is a germ of two atoms on a facet, the total energy of
N.. We will now focus on the precise microscopic descrip-the islanddoes nothange when a particle is transfered from
tion of the limiting step for relaxation in the low-temperature a kink to the germ(three bonds are broken, and three are

regime. created, see Fig. 2. Clearly the same is true if a particle from
the germ is transfered to its site of emission or any other

Il. DESCRIPTION OF THE LIMITING PROCESS kink. Thus germs can grow or decrease randomly without

AT LOW TEMPERATURE energy variations driving the process. An exception to this

occurs if the particle that reaches the germ is the last one of
a row on a facet; in that case, the energy of the system
During relaxation at low temperature, islands are mostlydecreases by one binding energyThe island is then in a
in fully faceted configurations. Let us, for instance, considerconfiguration from which it is extremely improbable to re-
an island in a simple configuration given by Fig. 1. WHen turn to the previous configuration. For this to occur, a new
is larger thanl, the island is not in its equilibrium shape germ would have to nucleateand grow on the original
(which should be more or less a regular hexagdio reach facet. This event is almost impossible in the presence of the
the equilibrium shape, matter has to flow from the “tips” of kinks of the first growing germ, which act as traps for mobile
the island(facets of length in this cas¢to the large facetk. atoms. Thus, when a germ nucleates on a facet, it can grow
In this low-temperature regime there are very few mobileor decrease without changing the energy of the island except
atoms at any given time, therefore this mass transfer must bié a complete row on a facet disappears, in which case it
done step by step: the initial step being the nucleation of &stabilizes.”
“germ” of two bound atoms on a facet of lengthand then, The scenario above explains why no new rows appear on
the growth of this germ up to a side—1 due to the arrival small facets: when a germ grows on a small facet, since
of particles emitted from the kinks and corners of the boundatoms come either from a small or a large facet, no complete
ary of the island. Thus the germ grows, and eventually comrow of a facet can disappear during the germ’s growth, and
pletes a new row on the facet. thus the island never decreases its energy. On the other hand
This simple picture still leaves a basic question unanwhen the germ grows on a large facet, the germ might grow
swered: the relatively faster formation of a new row on aor decrease, but if the size of the germ reaches the size of the
small facet would lead the island further away from its equi-small facet, the energy of the system will decrease and the

A. Qualitative description
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time Markov chain. The unit time being,, the typical time
/ State 0 \ for a particle with two neighbors to move. This time is in fact
the smallest relevant time of the system so that the operation
Q of discretization does not affect the results. In the following,
State 1 the time; is the average time for a particle witieighbors
to move: 7,= v, *e* KT, For clarity, we will use the term
e O time for the discrete time of the Markov chain, and the term
real timefor the time of physical process. The obvious rela-
/—/ State 2 \ tion between the two time scales tsme=real time/r,.
We define the parameter=7,/73. In the limit of small
an! temperaturep is a very small quantity. Moreover, one can
/—/ State 3 \ easily check thap=exp(— E/kT)=2/L§ wherel . is the av-
erage distance between kinks defined in the first section. So
an that the conditiorL.>L (low-temperature regimecould be
/_/ St s \ written as:\/pL<1 orpL<1/L<1. '
Denote byq; the probability for the system in stateo

stay in the state the following step,p; the transition prob-

FIG. 3. Outline of the states considered in the Markov chain. ability for system in state to go to state+1, andq; the

) i transition probability for the system to go into statel. We

system has almost no chance to go back its previous Shapﬁave now to evaluate the different quantities p;, andg;

We believe that this is the microscopic origin of irreversibil- ;, terms of the diffusive processes that take place on the
ity in the relaxation of this system. It should be stressed thafsland’s boundary.

this scenario for the growth and stabilization of germs i
different from usual nucleation theory, where the germ has

overcome a free energy barfieo become stable.

f‘ We first evaluate the quantitigs;,q;, and a;. Let us
%ssume that the states 0 and 2 are absorbent; the average

o . - . ... _timen; needed to leave state 1, corresponds to the average
This microscopic description also shows that the I|m|t|ngreal time a particle stays on a facet starting on one of its

step for th|§ row by row” relaxation mechanism is _actually edges, which act as traps. Since the particle performs a ran-
the formation on a large facet, of a germ of the size of the

. : . om walk, this can be readily calculated to be,. So we
small facet. This fact allows us to estimate the duration Oﬂhould have y 2
the limiting step at each stage of the relaxation process.

1

:1_a1

B. A guantitative description ny =L. (4)

Based on our description of the process, we propose a
scheme for calculating the time required to form a stable Moreover, the probability to go to state 2 is the probabil-

germ, i.e., a germ of sizgon a facet of sizé. As mentioned jty that a new particle leaves a kink and reaches the facet
above, the appearance of this stable germ is the limiting ste@hile the first particle is still on the facet, we calculate this

for the formation of a new row on that facet. probability in Appendix A where we find
The idea is to describe the growth of the germ as a suc-
cession of different island states, and calculate the probabil- 2sinf2y/p(L—1)] sinh(2yp(L/2—1))
ity and the time to go from one state to another in terms of P=1— - — -
the actual diffusive processes occurring on the island surface. sint{ 2L ] sinh(2\pL/2)

These states form a Markov chain, the future evolution of the
system being essentially determined by the state of the sygye expand expression E¢p) for small p keeping the first
tem, independently of its previous behavior.

As a further simplification, we consider a simple fully

faceted island in a elongated hexagonal shape whose facets P=2p(L—1)+0(p). (6)
are of lengthL andl, see Fig. 1; moreover, we normalize . ]
every length by the lattice spacirey We could also calculate the probability, that the system in

The different states we consider deee Fig. 3 alsp state 1 eventually reaches state 2 as

estate 0: there is no particle on the facets;

estate 1: one particle is on one end of a facgt by=a;b;+p;. @)

estate 2: two particles are on the fatebne of them is on _ ; _ :
one end of the fgcet, and the other one has diffused from a-lr;hUSbl_ P1/(1~ay), and usingp; +a;+d; =1 we find
end; P L-1

estate 3: two particles are on the fadetbut they are plzrzszJro(p), (8)
bonded together;

sstate 4: three bonded particles are on the facet w111 )

1= y
estaten: n— 1 bonded particles are on the fatet
The goal of this calculation is to estimate the time to go 1Pl ZpL_l (p) (10)

. =———=——2p——+0
from state O to state+ 1. We treat the problem as a discrete A L L L L
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We can do the same with state 2, knowing that the probabil- ols . ox
. : . . 2 q . - oy
ity for two particles to stlck(state-3) isN/L, where A ‘__"\ A‘__q\“’\ Pl
=[(coshm+1)/sinh7]7 (the calculation of this probability @ @ @ @ @
is carried out in Appendix B The time to leave state 2 is qrr Z L
kL, where x is a numerical constant given by o O Q > Qﬂ* P
= (47?2 [U(1+4K?)][2—1/(2k+1)] (see Appendix 2 it pt o
C). Thus we obtain
QoL a
_ A P2 q q 9 9
pz—ma (11) | e e ]

ar=1- &, (12 OYQ\OW \p') f
©

1 A

QZ_E_E' (13 FIG. 4. Diagram of the entire Markov chain with the two

branches: the upper one for the germs growing on a small facet and
In order to obtain a chain which can be treated analytithe other one for the germs growing on the large one, $tate is

cally, we assume that the probability to go from state 3 tothe only absorbing state.

state 4, is the same as the probability to go from state 4 to

state 5 and, in general, that the probabilities to go from statéalculated before, replacing by I. Thus we haveq_;

i to statei+1 arep,=p;.,;=p for i=3. Similarly, we as- =Ppi(L=1), p_i=0i(L=1), and a_;j=a;(L=1) for i=1

sume thato;=a; =« for i=3 andq;=q;,,=q for i>3.

To calculate the probabilitiep,q,«, in Appendix D we

have calculated the average real titpg , to go from state

except for the state—I|, where we always haver_;
=a(L=1), but,p_,=2*g(L=1). In the following, we will
use the notationp; = p;(L=1), the values ofp; where we

to statei+1 assuming the average distance between kink§ave replace. by I.

and the germ i&./2: t, 4 ,=L/4* 73+ L(L—2)/4* 1,. More-
over, sincep=q, we can calculat@,q, anda:

To complete the calculation, we now have to determine
Po.do andag. The average real time the system stays in state

0, assuming states 1 an¢ll are absorbent, is almos}/2 if

_ 2(L-2) , ) we take into account that there dveo kinks, one at each end
pP=2p/L— P tolp ), (14 of the facet. The probability that the germ nucleates on the
facetL is simply L/(L+2l). From this we deduce:
4 4(L-2

aZI—Tp-i-(T)pz-i-o(pz), (15) L .

Po=2[ 5P (17)
2(L-2) , ,
q=2p/L— ——p"+0(p%). (16) ay=1-2p, (18
When two particles are bonded on the facstate 3, the 2l

probability to go to state 2 should practically be equafjto Qo=2 5 P- (19)
we will assume this to be the case. ) ) o ] .
So far, we have omitted the possibility that the germ canf he diagram of the entire Markov chain is then given by Fig.

also nucleate on a small fadefTo take this into account, we 4. And we will calculate the time to go from state O to state

have to consider new states: I+1. _ .
estate —1: one particle is on the facéton one of its The statd + 1 is absorbentas discussed above, when the
edges; size of the germ reaché®n a large facet, the system cannot

eState— 2: two partic|es are on the facktone of themis 90 back to the initial Sta)el_et us Ca”ni the average time to
on the edge of the facet, and the other has diffused from afio from state to statel +1. We can write
edge;

estate —3: two particles are on the facétbut they are N =1+2g*n_y+a*n., (20

bonded; _ N N .
estate—4: three bonded particles are on the facet N =1+ N1+ a™ N +p"N_ysq, (21)
estate—I: | —1 bonded particles are on the fatet with  3<ks=lI (22)
As discussed above, if the system arrives to state a

row on a small row is completed, which is not an absorbent

state, and since this row cannot grow any further the system . N .

can only go back to state | +1 or stay in state-1. n_p=1+dzn_s+azn_»+pzn_s, (23
The different probabilities of transition from one state to

another in this branch of the chain are the same as the ones n_1=1+ging+ain_;+pin_,, (24)
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=1+qon_;+ +
No=1+qon_1+ agNo+Pony, (25) / T=83K
n]_: 1+q1n0+ alnl+ p1n2! (26) 10 | T=100 K,
- /T=125 K
n2: 1+q2nl+ a2n2+ p2n3 (27) g /
& T=250 K
£ ° -/ 1
=3 T=500 K
g) L]
ne=1+qne_1+ang+pneq, (28 = /
with 3sks=I|—-1. (29 10 , , ,
" . ) 2.0 3.0 4.0 5.0 6.0
The poundary_ condmon fo_r this procesanslz_o. Th_e_cal— log(Number of atoms)
culation ofng is quite straightforward but tedious, it is car-
ried out in Appendix E. We find that in the limit of small FIG. 5. Size dependence of the relaxation time for different
temperatures, the typical real time needed to nucleate a gerremperatures in log-log bases. Filled points have been obtained by
of sizel on a facet of size. is given by Monte Carlo simulations whereas the solid lines have been obtained

by integration of the systert85) and (36). The agreement of the

7'% (L+21) | (L two analyses is almost perfect.
(L)~ —=——||=—1|(-21)+1|, (30
T 4L(L=1)[\ A
Lv(L)+2lv(l)=0. (32
where we have kept only the most relevant term at low tem- } ) )
peratures. Moreover, we can find geometric relations between
L,lL,v(L),v(l):
I11. ESTIMATION OF THE RELAXATION TIME dl
Scaling laws U(L):‘/ﬁlzﬁ’ (33
In this section we calculate the typical time required for
an island to relax from an initial out of equilibrium shape. v(h)= J3/ ﬂ+ d_L (34)
We assume that at all times, the instantaneous shape of the dt  dt
island can be characterized by the lendthend| of its long So finall find
and short facets, respectively. Then, following the discussion © finafly we fin
in the previous sections, a new row of particles will appear dl 2 1
on a long facet after a time(L,l). Thus, callingv(L) the RTINS TL (35
normal speed of the large facet and taking the particle size as V3 7LD

our unit distance, we have

dL 2 (L N 1) 1 36
1 47, (L—1 T LN
o=t~ TZL( ) e e Vsl ek
’ ma(L+21) (—— 1j(I-1)+1 To integrate these equations numerically: we use(Ed0),
A and forpl,gl, anda, the exact estimation using EGA9),

as well as the explicit values of the quantitigsa; , andp;

The scaling properties of the relaxation time can be de ) . )
duced by noticing that the length scales involved scale ad® have found. Eqs{ll)—l(19). We start the mtegranon from
an island of aspect ratio dR=10, and stop it when the

NY2, where N is the number of atoms of the island. Thus we e , F
renormalize the lengths by—x'=N"2. Then, to scale aspect ratio iR=1.2. Aspect ratios are explicitly calculated
out the size dependence Bsgrows, one must rescale time as
by t—t’=tN"1. This is the result obtained in Ref. 5: at low
temperature, the relaxation time is proportional to the num- R=—,
ber of the atoms of the island. But, as we expect our results Ty
for the time required to complete a row at each stage, as
given in Eq.(E10), to be relatively accurate, we can go be- r2:1f J (X—Xg)2dxd
T . . ! . X G Ys (38)

yond the scaling properties and use it to calculate numeri- SJ Jisiand surface
cally the time required for the complete relaxation process,
including the corrections arising from the lower-order terms. , 1

In what follows, we establish the differential equations ry—éaf f,
which permit the calculation of the full relaxation time of an
island. As mentioned above, we still consider the simple is-
land of Fig. 1, where (L) is the normal speed of the fadet s:f J’
andv(l) that of the facet. We now consideL and| as !
continuous variables, which considerably simplifies the calwherexg andyg give the position of the center of gravity of
culation. the island. We report in Fig. 5 the relaxation time as a func-

Conservation of the matter imposes the relation tion of N, the number of particles of the island in a log-log

I'x

(37)

(Y—Yg)?dxdy, (39

sland Surface

dxdy, (40

sland Surface
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plot. We find a good quantitative agreement between thevould depend on the facet upon which it happens. Such a
simulations and our predictions except at the highest temdependence of the nucleation time may drive the island to-
peraturegsee below. ward a nonregular hexagon equilibrium shapend would
reproduce the phenomenology of a larger variety of materi-
als. These changes will affect the temperature dependent
prefactors in our results, as these depend on the temperature
We have considered the shape evolution of two-through 7, and 73. However, the size dependence of the
dimensional islands as a result of the nucleation of a germ oRucleation time and of the relaxation time, which is where
a facet which then grows or decreases due to single-particlére departure from Mullin’s theory is evidenced, would stay
processes. Then we recognized that the disappearance ofhg same.
complete row is responsible for the stabilization of the germ, From a more general point of view, only the diffusion of
and that this is only feasible for germs growing on the largeparticles along the perimeter of islands has been taken into
facets. This gives rise to an overall flux of particles from theaccount in this work. In real systems, other mechanisms can
small facets to the large facets which leads the shape of thHeontribute to the transport of the matter which leads to relax-
island irreversibly towards equilibrium. Based on this de-ation: volume diffusion and transport through the two-
scription, we have recast the formation of stable germsgimensional gas of particle surrounding the island. Volume
which is the limiting step for relaxation, into a Markov chain diffusion is usually a much slower process than the other
in which the transition probabilities are calculated in terms oftwo, and can usually be neglected safely. On the other hand,
the underlying diffusive processes taking place on the isitis well known that edge diffusion is more efficient for short
land’s boundary. Solving this chain yields an estimate of thdfips whereas transport through the 2D gas is faster on long
time of formation of a new row at each stage of the relax-distances. Following Pimpinelli and Villain in Ref. .
ation. Integrating our results we can obtain the relaxationl32), a characteristic length, beyond which edge diffusion
time for the evolution of an island from an aspect ratio of 10is less efficient than transport through the gas can be evalu-
to an aspect ratio of 1.2, as a function of temperature andted:r,~Dg7, whereDy is the edge diffusion coefficient
island size. Our results have a rather good quantitative agreend 1/, the probability per unit time a given particle leaves
ment with those obtained from direct simulations of the systhe island. So that our assumptions should be valid for is-
tem. At higher temperatures, multiple nucleation processedands with a numbeN of particles such thai<Dg7, . Since
the presence of many mobile particles on the island’s boundhe activation energy for edge diffusion is smaller than the
ary and the failure of our hypothesis>L (Sec. Il B in-  activation energy for evaporation, is a decreasing quantity
validate our picture and the relaxation becomes driven by thwith temperature, and we expegt to be very large at low
coarsed grained curvature of the boundary, which leads ttemperature. Thus, this mechanism is essentially irrelevant in
Mullins classical theory. the description of the evolution of nanometer structures at
The description of the simple model considered in thislow temperatures. Moreover, recent experimental reSults
work is certainly not exact and there are other effects thahave shown that supported Ag two-dimensional islands relax
could be taken into account. Perhaps the most important efda atomic diffusion on the island perimeter, without signifi-
fect we have overstepped at low temperatures, is related want contribution from exchange with the two-dimensional
our assumption that after the germ stabilizes a single newas.
row is formed on the large facet. The differential equations Finally, our results are to be compared with a recent the-
for the evolution of the island were derived from this as-oretical study’ concerning the relaxation of three-
sumption. It is clear that this is not correct: Our estimation ofdimensional crystallites. This study also points out two re-
the time required to stabilize a germ starts from a fully fac-laxation regimes as a function of temperature. At high
eted configuration, and once a complete row on a small facéemperature the relaxation scales in accordance with the re-
disappears the germ becomes stable and a full row on thaults derived from Mullins’ theory, whereas at low tempera-
large facet can be formed. Once this row is finished, it is veryture the relaxation time becomes an exponentional function
unlikely that the island will be in a fully faceted configura- of the size of the crystallites. So that the effects of lowering
tion again, leaving at least an extra kink on the boundarythe temperature are qualitatively different for two-
This gives rise to extra sources and traps for mobile particleslimensional and three-dimensional crystallites: In two di-
which might have affected the relaxation rate. Another issuenensions, lowering the temperature decreases the strength of
is our characterization of the faceted island with only twothe dependence of the relaxation time as a function of the
facets sizes: a more detailed characterization may be relevasize of the crystallitegas it crosses over from M2 depen-
especially in the early stages of relaxation. It is clear thadence to aN dependende whereas it increases this the
more accurate models for specific systems can also be costrength in three dimensions. In both cases, the limiting step
structed. These could take into account the dependence &f the nucleation of a germ on a facet: a unidimensional germ
the edge-diffusion coefficients on the orientation of the facetin two dimensions, and a two-dimensional germ in three di-
as well as the dependence of emission rates on the locatensions. The difference stems from the fact that in the two-
geometry. Such dependences have been studied, for edimensional case, the activation energy for the creation of
ample, by Ref. 9. In terms of the elements of description wehe germ does not depend on the size of the island, it is
use, inclusion of these effects would be achieved by changalways constant, B, and it stabilizes when a row on a small
ing the values ofr, (diffusion time and 753 (emission time facet has been removed. In the three-dimensional case, this
from kinks and cornejsdepending on the orientation of the activation energy depend on the size of the crystallite. The
facets involved in each event. Thus the nucleation timdransfer of a particle from a tip of the crystallite to the germ

IV. SUMMARY AND DISCUSSION
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has a gain in volu_me energgepending on the size_\ of the 452 77 1 sim(2n+1)x]

islandg and a loss in edge energy of the gefaepending on P=— 2 , (A4)
the size of the gerin Summing these two terms, an energy 7 0=02n+1 52+ (2n+1)?

barrier proportional to the size of the crystallite appears for, here

the creation of a stable germ. The exponential behavior o¥v

the relaxation time as a function &f is a consequence of L2

this energy barrier dependence. Finally, we believe that the 5= , (A5)
overall picture presented here, while still oversimplified, D77

seems to be complete enough to provide a general picture of

the processes leading to the shape relaxation of two- X

dimensional islands at low temperatures. X=7 (AB)
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APPENDIX A: CALCULATION OF THE PROBABILITY 1 sin(2n+1)x]
TO HAVE TWO PARTICLES ON THE FACET n=0 2N+1 5§24+ (2n+1)>2
We calculate the probabilitf? of having two particles on X o1 , ,
a facet with absorbing boundaries, knowing that at time Zfo §(8,x")— 7¢4(8/4,2x") |dx".  (A8)

=0, one particle is on one edge of the fa@iscissa 1), and
that the other particle can appear on the facet with a probSo that, using EqSA5) and(A6), we finally find the follow-
ability per unit time 1. Relatively to our Markov chain, this ing expression foP:

probability is the probability the system in state 1 eventually
reaches state 2.

2sinf2\p(L—1)] sinh(2p(L/2—1))
We denote byS(x,t) the probability that a particle on the P=1- -

facet at positiorx at timet=0 is still on the facet at timé sinl{2\/pL] sin(2pL/2) a6
Then, S(x,t) satisfies the usual diffusion equation (A9)
wherep= 7,/ 73, and we have takex=1 (the initial particle
IS(x,1) 92S(x, ) on the face is at position 1 at time=0). We can expand

pr o (Al)  expression EqA9) for small p keeping the first term
P=2p(L—1)+o0(p). (A10)
This equation is to be solved with the conditior&x,0)
=1 for everyxe]O,L[ (i.e., we are sure to find the particle
on the facet at timé=0), S(0,t)=S(L,t)=0 for everyt
(i.e., the boundaries sides of the facet are absoyb@ie

solution of Eq.(A1) is In this part we evaluate the probabili§y, that two par-

APPENDIX B: PROBABILITY THAT TWO PARTICLES
STICK ON THE FACE

ticles stick on a facet with absorbing boundaries, knowing

= 4 ((2n+1)7x (D20 DAL that at timet=0, one particle is on one end of the facet, and
S(X,t)=nzo (2n+ 1)775”1 L e . the other is at a positiory on the face. This problem can be

(A2) mapped toa 2D problem in which, at timahe firs.t.partigle

is at positiony, and the second particle is at positienThis

virtual particle moves diffusively in a square of sidestart-

from position §g,a) (a is the lattice spacing The quan-
we are looking for is the probability for this virtual par-
ticle to reach the diagongl=x of the square. Thus we can
consider the motion of the virtual particle in the triangle 0
s=x=<y=<L. We call D(x,y) the probability that a virtual
. . particle starting at timé=0 from (x,y) leaves the triangle
P:f 1/re~ 7S(x,t)dt. (A3) by the dlagqnaI,V(x,y), the 'probgblhty that this particle
0 leaves the triangle by its vertical side, aAdx,y) the prob-
ability that this particle leaves the triangle by its horizontal

To take into account the appearance of particles on th
facet, we assume the process to be Poissonian so that t
probability to have a particle appearing at timeis
(1/7)e V7. Thus the probabilityP that two particles are on
the facet is

To take into account that particles can appear on the facet aside. We use here a continuous description: the discrete

both ends, we take= 75/2, which holds at low temperatures. problem being far too difficult. It can be easily seen tbat
This leads to the expression V, andH satisfy Laplacian equations
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AD(x,y)=0, AV(x,y)=0, AH(x,y)=0 (B1) Ho(L,y)=0, H(0y)=0, (B9)

with the conditions Ho(x,00=1, Hg(x,L)=0 (B10)

DOxx)=1, D(x0=0, D(0y)=0, B2 for Vxe[OL] and Vye[OL].

V(x,x)=0, V(x,0=0, V(L,y)=1, (B3)  The solution of Eq(B6) with these conditions is
H(x,x)=0, H(x,0=1, H(0y)=0 (B4) 2m+l)mx | (2m+1)m(L-y)
»  Sin L sinh L
for Vxe[OL] and Vye[OL], = _
o] yeloL] Holuy)=2 mE:o 2m+1 sinh2m+ L7
and, moreover, we should have (B11)
D(x,y)+V(x,y)+H(x,y)=1, (BS)

S@2m+L7y . (2m+1)7wX

which states that the particle is sure to leave the triangle » S sinh——r

since all S|de'_5 are absorbent. Instead of calculating directly Vp(X,y)= p mE:O M1 sinh2ms D7

D(x,y), we will calculateV(x,y) andH(x,y). (B12)
We first calculateV(x,y) and Hg(x,y) which are the

probability that one Brownian particle in a square with ab-  ope now can deduce the valuesvx,y) andH(x,y) of
sorbing sides, respectively, leaves the square by the verticgy injtial problem with a superposition of solutions to im-

AVo(GY)=0,  AHK(y)=0 (B6) V(X,y) =Va(x,y) = Va(y.x), (B13)
with boundary conditions
H(X,y)=Hn(x,y) =Hn(y,X). (B14)
Vo(x,L)=0, Vp(x,0)=0, (B7)
Using Egs.(B5), (B13), (B14), (B11), and (B12), we fi-
Vg(0y)=0, Vg(L,y)=1, (B8) nally find an expression fdD(Xq,a):
|
S (2m+1)mal| | (2m+1)wXy . (2m+21)mw(L—Xg)
» Sin sinh —sinh
D(Xp,a)=1—— >, = - -
o T 2m+1 sinh(2m+1) 7
S (2m+1)mx| . (2m+1l)w(L—a) . r1(2m+ 1)7a
4 = Sin 3 sinh 3 —sinh 3
o7& 2m+1l sinh2m+1)7
|
We now have to calculate the probability that the second T X
particle is at positiorx, when the other one appears on the P(Xo) =5 sin—. (B16)

facet. We denote this probabili®(x,). Then the probability

we are looking for is simpl
g Py With this expression Eq(B15) becomes easy to calculate

) and we find
PA=j D(Xg,a)P(Xg)dXg. (B15)
0 ~m(L—a) | ma
sth - sth

We are actually able to calculate the exact probab#ify,), Po=1- . (B17)
but then we are not able to find a simple expressiorPfgr, sinhw
so we prefer to make the following approximation: In the
limit of small temperature, the typical time needed for a par- coshmr+1\ wa a2
ticle to appear on the facet is abot, which is long com- =( - _—— +0(1/L?).
pared to the typical time a particle lasts on the fa@gtout sinhm | L 212

L7, for a particle that starts near the eglgéhus, to a good (B18)
approximation, the probabiliti?(x,) has reached its station-

ary value. Taking into account only the first term of the So that we find that the leading termBf, is proportional to
series, we have 1/L. We write this as
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1 L2 & 1 2kar [2 1
PA=\T +0(11L?) (B19) (r)= D R _
DS k=1 1+4k? L |k k(2Zk+1)
C
, coshm+1 (C7)
with A=| —=— (B20)  We are interested in the leading term las->%, so let us
v . .
define a functiorf (u) by
APPENDIX C: CALCULATION OF THE TIME “ 1 2
TO LEAVE STATE 2 f(u)= sin(ku) |-——=——|. (C8
() g‘l 1+4k? k) k(2k+1) 8
We calculate in this part the average tirte) for two ) i
particles on the facet either to bond, or either one of them td (U) is & normally convergent series, so that
reach the boundary. This time corresponds to the time the ‘ %
system stays in state 2 in the Markov chain. Using the de- df(u) — z 1 cogku) |2— 1 (C9)
scription of Appendix B with the virtual particle in the tri- du =11+4k2 (2k+1)
angle, we are looking for the average time this particle needs
to leave the triangle. u—0 * 1 1
Let us call S(xg,Y,t) the survival probability: i.e., the — 5 {2— K1 (C10
probability a particle starting atxg,y,) at timet=0 is still k=1 1+4k ( )
in the triangle at timet. The average tim&7(Xo.Yo)) the  \yhich is also convergent. The second term of the develop-
particle stays in the triangle is given by ment is of orde? or smaller, so that integrating E€C10),
" and using it in Eq(C7), we find
<T(X01y0)>:f S(Xo,Yo,t)dt. (Cy oo
’ (7) 2L ! { +O(1/L)
T)— ——= S — Ty .
Moreover, callingP A (X,Y,Xg,Yo.t) the probability that one D72 k=1 1+ 4k? (2k+1)
particle starting atX,,y) attimet=0 is at position k,y) at (Cly
timet, we have Thus() is proportional toL, and we write
S(X0.Yo.t)= f f PA(X,Y,Xo,Yo,t)dxdy.  (C2) (1) =xLr+ O(IL) (C12
A
Finally, we are only interested i(r(xq,1)) since we know with k= i 1 [2_ . (C13
that our virtual particle starts ak{,a), so we have to aver- 72 k=1 1+ 4k? (2k+1)
age the timg 7(xg,1)) over all valuesxy. To do this we use
the approximate distribution given in E(B16): APPENDIX D: CALCULATION OF THE TIME
L A PARTICLE NEEDSTO GO TO CENTER
<T>:J’ P(X0)<T(X0,1)>dxo. (C3 OF THE FACET
0
i ) We now calculate the average real timg, , to go from
So finally, using Eqs(C1)—~(C3), we need to evaluate statei to statei +1 assuming the average distance between
L ro the kinks or corners from which particles are emitted and the
<T>:f j f f P(X)PA(X,Y,Xo,11)dxdy dt dx. germ isL/2. This again can be posed as a Markov chain
0Jo A where
(C4 estate 0: no particle is on the facet;

estate 1: one particle coming from a kink is in position 1
We now have to calculatB ,(X,Y,Xq,1t). As before, we on the facet: P g P

find the solution in a square, and then by superposition, we -state 2: the particle is at position 2;
deduce the solution in the triangle:

estatek: the particle is at positiok; and state_/2 is ab-
sorbent.

PA(XY, X0, 1) = Po(X,Y,X0,11) = P(X,Y,1 X0, 1),
C5
( Again we user, as the unit time. Using the same defini-

4 = marX nar tion for the quantitie®;, qg;, ande; as in the main text, we
Po(X,y. X, 1) =— E sin % gin— have
L2 mn=1 L L
pi=1/2, (D1)
. mmx - nwy 2,02\ 2007 2
X _ —[D(Mm“+n“)7<t]/L .
sin——sin——e w=0. 2
(Co q;=1/2, (D3)

We find (7) integrating Eq.(C4) using Eqgs.(C5) and(C6)
overx, first, and then ovex andy, and finally ovet, we find with  i=1.
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To calculatepy and @y we know that the real time an atom Py | —2
needs to leave a kink is;, and as there are two kinks at the 1+ F >
ends of the facetrs/2 is, to a good approximation, the aver- A= —m ———— (E4)
age time to leave state 0. Thus that we find 1—a,— p2| —2
-1
pOZZPa (D4)
a2
ag=1-2p. (D5) B=—"7>5" (ES
. . . 1-ap— Por—7
Calling n; the average time to go from stat® the absorbent
stateL/2, we have the equations (E6)
No=1+ aoNo+ Pony, (D6) We now calculate the case<0. Calling m;=n_; for
everyj, and summing Eq(21) from j to z— 1, one finds
Ng_q N
=1+ oty L (D7)
2 2 z—j
M,=m,_g=m—m;_;— —, (E7)
with k=1,
and Eq.(20) yieldsm;—m,_,=1/2p*. Using this in Eq(E7)
N =0, (D8)  and takingj =3, one finds
andn,,»,=0. Summing Eqs(D7) from k=1 to j, and then
from j=1 to L/2—1, and using Eq(D8), one finds -3 1
L-2 N L-2 DY
M= Nom 5 (9 Using Eqgs.(23) and(24), one finds

and Eq.(D6) permits to obtaimg

*

1 p7 p1p2
n,l:_

_ L LL-2) ai  9igs  aigzp*
—2—po+ R (D10

(1-5/2+ny.  (E9)

No

. ) ) ) One can know obtain the value of, from Egs. (E3),
Going back to real time, one finds the average tima (E9), and(25):

particle needs to leave a kink and reach the center of the

facet is
o} 1+p.A 1
L LL-2) ok m)”o—“pomﬂ‘o(g
thae=7 7t — 7 T2 (D1D)
H PIp3
*1* *1*2*(|_5/2) ’
APPENDIX E: CALCULATION OF nq q:92 Q9:0z2P
To carry out the calculation, we can first calculate the (E10

for k=1. Noting thatp=q, we have from Eq(28)
Then, using Egs(8)—(19) we can calculaté and B:

(Ngr1— N =(N—=n,_1)—1/p, (ED

i . . L (d=-1(-2)
so that summing frork=4 toj, and then fromj =4 tol, and A= 20 7L
usingn,, ;=0, we find p (X_l)“_l)Jrl

(1-2)(1-1) — oV —2)(] —
(I=Dng=(1=2)nz+1p| ————|.  (E2 ;L2(|_1)+L(L 2)(1-2)(1-1)
+ +o0(1),
Inserting this result in Eq27) we find n, as a function of (E—l)(l 141
ny4, in the same way, using E@26), one can deduce the A
equation forn,:
1
Ny(1—a;—p;.B)=1+p;A+ding, (E3) B=1-

3 .
where (X—l)(l—l)ﬂtl
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And finally, the expression dfiy is 1, but these terms are truly ugly and it does not seem rel-
evant to give them here.

1 (L+2l) |/L Going back to real time, we find that the timéL,l) to
”o=; =D lx " 1](I=1)+1]+0(1/p). nucleate a new row on a facet is given by
(E1D | 75 (L+21) [(L |
We report here only the leading term: the expressions of the r(L.h= 7 4L(L—1) N Ljd=b+l +0(73).
guantitiesp; ,q; , and«; permit us to calculatay up to order (E12
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