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We present a precise microscopic description of the limiting step for low-temperature shape relaxation of
two-dimensional islands in which activated diffusion of particles along the boundary is the only mechanism of
transport allowed. In particular, we are able to explain why the system is driven irreversibly towards equilib-
rium. Based on this description, we present a scheme for calculating the duration of the limiting step at each
stage of the relaxation process. Finally, we calculate numerically the total relaxation time as predicted by our
results and compare it with simulations of the relaxation process.

I. INTRODUCTION

The understanding, description, and control of structures
at the nanometer scales is a subject of interest from the fun-
damental and applied points of view.1,2 From the fundamen-
tal point of view, there is a large literature3,4 concerning the
growth of crystals and their shape. Yet, while the description
of the equilibrium shape is rather clear, the dynamic descrip-
tion of crystal growth is still not well understood. In particu-
lar, we lack a complete understanding of the time scales
involved in the relaxation process, and the mechanisms
which irreversibly conduce the island to its equilibrium
shape.

In this work, we study the shape relaxation of two-
dimensional islands by boundary diffusion at low tempera-
tures. The typical size of the islands we will be concerned
with consists of a few thousand atoms or molecules, corre-
sponding to islands of a few nanometers. The model we con-
sider is the same as the one studied in Ref. 5, where two
mechanisms of relaxation, depending on temperature, were
pointed out: At high temperatures, the classical theory devel-
oped by Herring, Mullins, and Nichols6 appears to describe
adequately the relaxation process. In particular, it predicts
that the relaxation time scales as the number of atoms to the
power 2. However, at low temperatures, the islands spend
long times in fully faceted configurations, suggesting that the
limiting step of the relaxation in this situation is the nucle-
ation of a new row on a facet. This assumption leads to the
correct scaling behavior of the relaxation time on the size of
the island, as well as the correct temperature dependence.
Yet, it is unclear what drives the island towards equilibrium
in this scenario.

In this paper we propose a detailed description of this
low-temperature relaxation mechanism, and identify the
event that drives the island towards its equilibrium shape.
Based on our description, we construct a Markov process
from which we can estimate the duration of each stage of the
relaxation process. Finally, we use our result to determine
the relaxation time of the islands and compare with simula-
tion results.

The specific model under consideration consists of two-
dimensional�2D� islands having a perfect triangular crystal-
line structure. A very simple energy landscape for activated

atomic motion was chosen: the aim being to point out the
basic of mechanisms of relaxation, and not to fit the specific
behavior of a particular material. The potential energyEp of
an atom is assumed to be proportional to the numberi of
neighbors, and thekinetic barrier Eact for diffusion is also
proportional to the number ofinitial neighbors before the
jump, regardless of thefinal number of neighbors:Eact
��Ep� i * E where E sets the energy scale (E�0.1 eV
throughout the paper�. Therefore the probabilitypi per unit
time that an atom with i neighbors moves ispi
��0exp��i*E/kbT�, where�0�1013 s�1 is the Debye fre-
quency,kB is the Boltzmann constant andT the absolute
temperature. Hence the average time in which a particle with
i neighbors would move is given by

� i��0
�1exp� i * E/kbT�. �1�

The complete description of the model and of the simulation
algorithm can be found in Ref. 5, where it was studied using
standard kinetic Monte Carlo simulations. This simple ki-
netic model has onlyone parameter, the ratioE/kBT. The
temperature was varied from 83 to 500 K, and the number of
atoms in the islands from 90 up to 20 000. The initial con-
figurations of the islands were elongated�same initial aspect
ratio of about 10�, and the simulations were stopped when
the islands were close to equilibrium, with an aspect ratio of
1.2. The time required for this to happen was defined as the
relaxation time corresponding to that island size and tem-
perature. Concerning the dependence of the relaxation time
on the size of the island, two different behaviors depending
on temperature were distinguished.5 At high temperature, the
relaxation time scaled as the number of atoms to the power
2, but this exponent decreased when temperature was de-
creased. A careful analysis showed that the exponent tends
towards 1 at low temperature. The dependence of the relax-
ation time as a function of temperature also changes, the
activation energy was 0.3 eV at high temperature and 0.4 eV
at low temperature. In this context, it is important to define
what we call a low-temperature: following Ref. 5, we denote
by Lc the average distance between kinks on a infinite facet:
we define the low-temperature regime as that in whichLc
�L whereL is the typical size of our island, large facets are
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then visible on the island. It was shown thatLc
�(a/2)exp(E/2kbT) wherea is the lattice spacing.

The behavior of the relaxation time as a function of the
temperature andN, the number of particles of the island, can
be summed up with two equations corresponding to the high-
and low-temperature regimes:

t relaxation
HT �exp�3E/kbT�N2 for N�Lc

2 , �2�

t relaxation
LT �exp�4E/kbT�N for N�Lc

2 . �3�

Replacing the temperature dependent factors by a function of
Nc the crossover island size�where Nc�Lc

2�exp(E/kbT)],
these two laws can be expressed as a unique scaling function
depending on the rescaled number of particlesN/Nc :

t relaxation�� Nc
5� N

Nc
� 2

for
N

Nc
�1

Nc
5 N

Nc
for

N

Nc
�1

,

so that the relaxation time7 is a simple monotonous function
of N/Nc , and the temperature dependence is contained in
Nc . We will now focus on the precise microscopic descrip-
tion of the limiting step for relaxation in the low-temperature
regime.

II. DESCRIPTION OF THE LIMITING PROCESS
AT LOW TEMPERATURE

A. Qualitative description

During relaxation at low temperature, islands are mostly
in fully faceted configurations. Let us, for instance, consider
an island in a simple configuration given by Fig. 1. WhenL
is larger thanl, the island is not in its equilibrium shape
�which should be more or less a regular hexagon�. To reach
the equilibrium shape, matter has to flow from the ‘‘tips’’ of
the island�facets of lengthl in this case� to the large facetsL.
In this low-temperature regime there are very few mobile
atoms at any given time, therefore this mass transfer must be
done step by step: the initial step being the nucleation of a
‘‘germ’’ of two bound atoms on a facet of lengthL and then,
the growth of this germ up to a sizeL�1 due to the arrival
of particles emitted from the kinks and corners of the bound-
ary of the island. Thus the germ grows, and eventually com-
pletes a new row on the facet.

This simple picture still leaves a basic question unan-
swered: the relatively faster formation of a new row on a
small facet would lead the island further away from its equi-

librium shape, and yet, we observe that this never happens.
Indeed, sometimes a germ appears on a small facet but it
eventually disappears afterwards, whereas the appearance of
a germ on a large facet frequently leads to the formation of a
new row, taking the island closer to its equilibrium shape.

These observations are at the root of irreversible nature of
the relaxation, germs only grow and become stable on the
large facet, so the island can only evolve to a shape closer to
equilibrium. Yet, there is clearly no local drive for growth on
large facets nor any mechanism inhibiting growth on small
ones. In order to explain how this irreversibility comes
about, we propose the following detailed description of the
mechanism of nucleation and of growth of a germ.

First, to create a germ, two atoms emitted from the cor-
ners of the island have to encounter on a facet. The activation
energy required for this event is obviously independent of
whether it occurs on a large facet or on a small facet. Once
there is a germ of two atoms on a facet, the total energy of
the islanddoes notchange when a particle is transfered from
a kink to the germ�three bonds are broken, and three are
created�, see Fig. 2. Clearly the same is true if a particle from
the germ is transfered to its site of emission or any other
kink. Thus germs can grow or decrease randomly without
energy variations driving the process. An exception to this
occurs if the particle that reaches the germ is the last one of
a row on a facet; in that case, the energy of the system
decreases by one binding energyE. The island is then in a
configuration from which it is extremely improbable to re-
turn to the previous configuration. For this to occur, a new
germ would have to nucleate�and grow� on the original
facet. This event is almost impossible in the presence of the
kinks of the first growing germ, which act as traps for mobile
atoms. Thus, when a germ nucleates on a facet, it can grow
or decrease without changing the energy of the island except
if a complete row on a facet disappears, in which case it
‘‘stabilizes.’’

The scenario above explains why no new rows appear on
small facets: when a germ grows on a small facet, since
atoms come either from a small or a large facet, no complete
row of a facet can disappear during the germ’s growth, and
thus the island never decreases its energy. On the other hand
when the germ grows on a large facet, the germ might grow
or decrease, but if the size of the germ reaches the size of the
small facet, the energy of the system will decrease and the

FIG. 1. Configuration of the island we will consider in the quali-
tative description as well as in the quantitative one.

FIG. 2. The total energy of the island does not change when one
particle leaves a kink on the small facet to go in the germ on the
large facet.
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system has almost no chance to go back its previous shape.
We believe that this is the microscopic origin of irreversibil-
ity in the relaxation of this system. It should be stressed that
this scenario for the growth and stabilization of germs is
different from usual nucleation theory, where the germ has to
overcome a free energy barrier8 to become stable.

This microscopic description also shows that the limiting
step for this ‘‘row by row’’ relaxation mechanism is actually
the formation on a large facet, of a germ of the size of the
small facet. This fact allows us to estimate the duration of
the limiting step at each stage of the relaxation process.

B. A quantitative description

Based on our description of the process, we propose a
scheme for calculating the time required to form a stable
germ, i.e., a germ of sizel, on a facet of sizeL. As mentioned
above, the appearance of this stable germ is the limiting step
for the formation of a new row on that facet.

The idea is to describe the growth of the germ as a suc-
cession of different island states, and calculate the probabil-
ity and the time to go from one state to another in terms of
the actual diffusive processes occurring on the island surface.
These states form a Markov chain, the future evolution of the
system being essentially determined by the state of the sys-
tem, independently of its previous behavior.

As a further simplification, we consider a simple fully
faceted island in a elongated hexagonal shape whose facets
are of lengthL and l, see Fig. 1; moreover, we normalize
every length by the lattice spacinga.

The different states we consider are�see Fig. 3 also�
•state 0: there is no particle on the facets;
•state 1: one particle is on one end of a facetL;
•state 2: two particles are on the facetL: one of them is on

one end of the facet, and the other one has diffused from an
end;

•state 3: two particles are on the facetL but they are
bonded together;

•state 4: three bonded particles are on the facetL;
. . .
•staten: n�1 bonded particles are on the facetL.
The goal of this calculation is to estimate the time to go

from state 0 to statel �1. We treat the problem as a discrete

time Markov chain. The unit time being�2, the typical time
for a particle with two neighbors to move. This time is in fact
the smallest relevant time of the system so that the operation
of discretization does not affect the results. In the following,
the time� i is the average time for a particle withi neighbors
to move:� i��0

�1ei* E/kT. For clarity, we will use the term
time for the discrete time of the Markov chain, and the term
real time for the time of physical process. The obvious rela-
tion between the two time scales is:t ime�real time/�2.

We define the parameter���2 /�3. In the limit of small
temperature,� is a very small quantity. Moreover, one can
easily check that��exp(�E/kT)�2/Lc

2 whereLc is the av-
erage distance between kinks defined in the first section. So
that the conditionLc�L �low-temperature regime� could be
written as:��L�1 or �L�1/L�1.

Denote by	 i the probability for the system in statei to
stay in the statei the following step,pi the transition prob-
ability for system in statei to go to statei �1, andqi the
transition probability for the system to go into statei �1. We
have now to evaluate the different quantities	 i , pi , andqi
in terms of the diffusive processes that take place on the
island’s boundary.

We first evaluate the quantitiesp1 ,q1, and 	1. Let us
assume that the states 0 and 2 are absorbent; the average
time n1 needed to leave state 1, corresponds to the average
real time a particle stays on a facet starting on one of its
edges, which act as traps. Since the particle performs a ran-
dom walk, this can be readily calculated to beL�2. So we
should have

n1�
1

1�	1
�L. �4�

Moreover, the probability to go to state 2 is the probabil-
ity that a new particle leaves a kink and reaches the facet
while the first particle is still on the facet, we calculate this
probability in Appendix A where we find

P�1��2 sinh�2���L�1��

sinh�2��L�
�

sinh�2���L/2�1��

sinh�2��L/2�
� .

�5�

We expand expression Eq.�5� for small � keeping the first
term:

P�2��L�1��o���. �6�

We could also calculate the probabilityb1, that the system in
state 1 eventually reaches state 2 as

b1�	1b1�p1 . �7�

Thusb1�p1 /(1�	1), and usingp1�	1�q1�1 we find

p1�
P

L
�2�

L�1

L
�o���, �8�

	1�1�1/L, �9�

q1�
1

L
�

P

L
�

1

L
�2�

L�1

L
�o���. �10�

FIG. 3. Outline of the states considered in the Markov chain.
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We can do the same with state 2, knowing that the probabil-
ity for two particles to stick�state 3) is
/L, where 

��(cosh��1)/sinh��� �the calculation of this probability
is carried out in Appendix B�. The time to leave state 2 is
�L, where � is a numerical constant given by�
�(4/�2)
k�1

� �1/(1�4k2)��2�1/(2k�1)� �see Appendix
C�. Thus we obtain

p2�



�L2
, �11�

	2�1�
1

�L
, �12�

q2�
1

�L
�




�L2
. �13�

In order to obtain a chain which can be treated analyti-
cally, we assume that the probability to go from state 3 to
state 4, is the same as the probability to go from state 4 to
state 5 and, in general, that the probabilities to go from state
i to statei �1 arepi�pi �1�p for i�3. Similarly, we as-
sume that	 i�	 i �1�	 for i�3 andqi�qi �1�q for i �3.

To calculate the probabilitiesp,q,	, in Appendix D we
have calculated the average real timetp,q,	 to go from statei
to statei �1 assuming the average distance between kinks
and the germ isL/2: tp,q,	�L/4* �3�L(L�2)/4*�2. More-
over, sincep�q, we can calculatep,q, and	:

p�2�/L�
2�L�2�

L
�2�o��2�, �14�

	�1�
4�

L
�

4�L�2�

L
�2�o��2�, �15�

q�2�/L�
2�L�2�

L
�2�o��2�. �16�

When two particles are bonded on the facet�state 3�, the
probability to go to state 2 should practically be equal toq,
we will assume this to be the case.

So far, we have omitted the possibility that the germ can
also nucleate on a small facetl. To take this into account, we
have to consider new states:

•state �1: one particle is on the facetl on one of its
edges;

•state�2: two particles are on the facetl: one of them is
on the edge of the facet, and the other has diffused from an
edge;

•state�3: two particles are on the facetl but they are
bonded;

•state�4: three bonded particles are on the facetl;
. . .
•state� l : l �1 bonded particles are on the facetl.
As discussed above, if the system arrives to state� l , a

row on a small row is completed, which is not an absorbent
state, and since this row cannot grow any further the system
can only go back to state� l �1 or stay in state� l .

The different probabilities of transition from one state to
another in this branch of the chain are the same as the ones

calculated before, replacingL by l. Thus we haveq� i
�pi(L⇒ l ), p� i�qi(L⇒ l ), and 	� i�	 i(L⇒ l ) for i�1
except for the state� l , where we always have	� i
�	(L⇒ l ), but, p� l�2*q(L⇒ l ). In the following, we will
use the notation:pi* �pi(L⇒ l ), the values ofpi where we
have replaceL by l.

To complete the calculation, we now have to determine
p0 ,q0 and	0. The average real time the system stays in state
0, assuming states 1 and�1 are absorbent, is almost�3/2 if
we take into account that there aretwo kinks, one at each end
of the facet. The probability that the germ nucleates on the
facetL is simply L/(L�2l ). From this we deduce:

p0�2
L

L�2l
�, �17�

	0�1�2�, �18�

q0�2
2l

L�2l
�. �19�

The diagram of the entire Markov chain is then given by Fig.
4. And we will calculate the time to go from state 0 to state
l �1.

The statel �1 is absorbent�as discussed above, when the
size of the germ reachesl on a large facet, the system cannot
go back to the initial state�. Let us callni the average time to
go from statei to statel �1. We can write

n� l�1�2q* n� l �1�	* n� l , �20�

n�k�1�q* n�k�1�	* n�k�p* n�k�1 , �21�

with 3�k� l �22�

. . .

n�2�1�q2* n�1�	2* n�2�p2* n�3 , �23�

n�1�1�q1* n0�	1* n�1�p1* n�2 , �24�

FIG. 4. Diagram of the entire Markov chain with the two
branches: the upper one for the germs growing on a small facet and
the other one for the germs growing on the large one, statel �1 is
the only absorbing state.
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n0�1�q0n�1�	0n0�p0n1 , �25�

n1�1�q1n0�	1n1�p1n2 , �26�

n2�1�q2n1�	2n2�p2n3 �27�

. . .

nk�1�qnk�1�	nk�pnk�1 , �28�

with 3�k� l �1. �29�

The boundary condition for this process isnl �1�0. The cal-
culation ofn0 is quite straightforward but tedious, it is car-
ried out in Appendix E. We find that in the limit of small
temperatures, the typical real time needed to nucleate a germ
of size l on a facet of sizeL is given by

��L,l ��
�3

2

�2

�L�2l �

4L�L�1� � � L



�1� � l �1��1� , �30�

where we have kept only the most relevant term at low tem-
peratures.

III. ESTIMATION OF THE RELAXATION TIME

Scaling laws

In this section we calculate the typical time required for
an island to relax from an initial out of equilibrium shape.
We assume that at all times, the instantaneous shape of the
island can be characterized by the lengthsL and l of its long
and short facets, respectively. Then, following the discussion
in the previous sections, a new row of particles will appear
on a long facet after a time�(L,l ). Thus, callingv(L) the
normal speed of the large facet and taking the particle size as
our unit distance, we have

v�L ��
1

��L,l �
�

4�2L�L�1�

�3
2�L�2l �� � L



�1� � l �1��1� . �31�

The scaling properties of the relaxation time can be de-
duced by noticing that the length scales involved scale as
N1/2, where N is the number of atoms of the island. Thus we
renormalize the lengths byx→x��N�1/2x. Then, to scale
out the size dependence asN grows, one must rescale time
by t→t��tN�1. This is the result obtained in Ref. 5: at low
temperature, the relaxation time is proportional to the num-
ber of the atoms of the island. But, as we expect our results
for the time required to complete a row at each stage, as
given in Eq.�E10�, to be relatively accurate, we can go be-
yond the scaling properties and use it to calculate numeri-
cally the time required for the complete relaxation process,
including the corrections arising from the lower-order terms.

In what follows, we establish the differential equations
which permit the calculation of the full relaxation time of an
island. As mentioned above, we still consider the simple is-
land of Fig. 1, wherev(L) is the normal speed of the facetL,
and v( l ) that of the facetl. We now considerL and l as
continuous variables, which considerably simplifies the cal-
culation.

Conservation of the matter imposes the relation

Lv�L ��2lv� l ��0. �32�

Moreover, we can find geometric relations between
L,l ,v(L),v( l ):

v�L ���3/2
dl

dt
, �33�

v� l ���3/4� dl

dt
�

dL

dt � . �34�

So finally we find

dl

dt
�

2

�3

1

��L,l �
, �35�

dL

dt
��

2

�3
� L

l
�1� 1

��L,l �
. �36�

To integrate these equations numerically: we use Eq.�E10�,
and for p1,q1, and	1 the exact estimation using Eq.�A9�,
as well as the explicit values of the quantitiesqi ,	 i , andpi
we have found: Eqs.�11�–�19�. We start the integration from
an island of aspect ratio ofR�10, and stop it when the
aspect ratio isR�1.2. Aspect ratios are explicitly calculated
as

R�
r x

r y
, �37�

r x
2�

1

S� �
Island Sur f ace

�x�xG�2dxdy, �38�

r y
2�

1

S
a� �

Island Sur f ace
�y�yG�2dxdy, �39�

S�� �
Island Sur f ace

dxdy, �40�

wherexG andyG give the position of the center of gravity of
the island. We report in Fig. 5 the relaxation time as a func-
tion of N, the number of particles of the island in a log-log

FIG. 5. Size dependence of the relaxation time for different
temperatures in log-log bases. Filled points have been obtained by
Monte Carlo simulations whereas the solid lines have been obtained
by integration of the system�35� and �36�. The agreement of the
two analyses is almost perfect.
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plot. We find a good quantitative agreement between the
simulations and our predictions except at the highest tem-
peratures�see below�.

IV. SUMMARY AND DISCUSSION

We have considered the shape evolution of two-
dimensional islands as a result of the nucleation of a germ on
a facet which then grows or decreases due to single-particle
processes. Then we recognized that the disappearance of a
complete row is responsible for the stabilization of the germ,
and that this is only feasible for germs growing on the large
facets. This gives rise to an overall flux of particles from the
small facets to the large facets which leads the shape of the
island irreversibly towards equilibrium. Based on this de-
scription, we have recast the formation of stable germs,
which is the limiting step for relaxation, into a Markov chain
in which the transition probabilities are calculated in terms of
the underlying diffusive processes taking place on the is-
land’s boundary. Solving this chain yields an estimate of the
time of formation of a new row at each stage of the relax-
ation. Integrating our results we can obtain the relaxation
time for the evolution of an island from an aspect ratio of 10
to an aspect ratio of 1.2, as a function of temperature and
island size. Our results have a rather good quantitative agree-
ment with those obtained from direct simulations of the sys-
tem. At higher temperatures, multiple nucleation processes,
the presence of many mobile particles on the island’s bound-
ary and the failure of our hypothesisLc�L �Sec. II B� in-
validate our picture and the relaxation becomes driven by the
coarsed grained curvature of the boundary, which leads to
Mullins classical theory.

The description of the simple model considered in this
work is certainly not exact and there are other effects that
could be taken into account. Perhaps the most important ef-
fect we have overstepped at low temperatures, is related to
our assumption that after the germ stabilizes a single new
row is formed on the large facet. The differential equations
for the evolution of the island were derived from this as-
sumption. It is clear that this is not correct: Our estimation of
the time required to stabilize a germ starts from a fully fac-
eted configuration, and once a complete row on a small facet
disappears the germ becomes stable and a full row on the
large facet can be formed. Once this row is finished, it is very
unlikely that the island will be in a fully faceted configura-
tion again, leaving at least an extra kink on the boundary.
This gives rise to extra sources and traps for mobile particles,
which might have affected the relaxation rate. Another issue
is our characterization of the faceted island with only two
facets sizes: a more detailed characterization may be relevant
especially in the early stages of relaxation. It is clear that
more accurate models for specific systems can also be con-
structed. These could take into account the dependence of
the edge-diffusion coefficients on the orientation of the facet,
as well as the dependence of emission rates on the local
geometry. Such dependences have been studied, for ex-
ample, by Ref. 9. In terms of the elements of description we
use, inclusion of these effects would be achieved by chang-
ing the values of�2 �diffusion time� and �3 �emission time
from kinks and corners� depending on the orientation of the
facets involved in each event. Thus the nucleation time

would depend on the facet upon which it happens. Such a
dependence of the nucleation time may drive the island to-
ward a nonregular hexagon equilibrium shape,10 and would
reproduce the phenomenology of a larger variety of materi-
als. These changes will affect the temperature dependent
prefactors in our results, as these depend on the temperature
through �2 and �3. However, the size dependence of the
nucleation time and of the relaxation time, which is where
the departure from Mullin’s theory is evidenced, would stay
the same.

From a more general point of view, only the diffusion of
particles along the perimeter of islands has been taken into
account in this work. In real systems, other mechanisms can
contribute to the transport of the matter which leads to relax-
ation: volume diffusion and transport through the two-
dimensional gas of particle surrounding the island. Volume
diffusion is usually a much slower process than the other
two, and can usually be neglected safely. On the other hand,
it is well known that edge diffusion is more efficient for short
trips whereas transport through the 2D gas is faster on long
distances. Following Pimpinelli and Villain in Ref. 4�p.
132�, a characteristic lengthr 1 beyond which edge diffusion
is less efficient than transport through the gas can be evalu-
ated:r 1��Ds�v whereDs is the edge diffusion coefficient
and 1/�v the probability per unit time a given particle leaves
the island. So that our assumptions should be valid for is-
lands with a numberN of particles such thatN�Ds�v . Since
the activation energy for edge diffusion is smaller than the
activation energy for evaporation,r 1 is a decreasing quantity
with temperature, and we expectr 1 to be very large at low
temperature. Thus, this mechanism is essentially irrelevant in
the description of the evolution of nanometer structures at
low temperatures. Moreover, recent experimental results11

have shown that supported Ag two-dimensional islands relax
via atomic diffusion on the island perimeter, without signifi-
cant contribution from exchange with the two-dimensional
gas.

Finally, our results are to be compared with a recent the-
oretical study12 concerning the relaxation of three-
dimensional crystallites. This study also points out two re-
laxation regimes as a function of temperature. At high
temperature the relaxation scales in accordance with the re-
sults derived from Mullins’ theory, whereas at low tempera-
ture the relaxation time becomes an exponentional function
of the size of the crystallites. So that the effects of lowering
the temperature are qualitatively different for two-
dimensional and three-dimensional crystallites: In two di-
mensions, lowering the temperature decreases the strength of
the dependence of the relaxation time as a function of the
size of the crystallites�as it crosses over from aN2 depen-
dence to aN dependence�, whereas it increases this the
strength in three dimensions. In both cases, the limiting step
is the nucleation of a germ on a facet: a unidimensional germ
in two dimensions, and a two-dimensional germ in three di-
mensions. The difference stems from the fact that in the two-
dimensional case, the activation energy for the creation of
the germ does not depend on the size of the island, it is
always constant, 4E, and it stabilizes when a row on a small
facet has been removed. In the three-dimensional case, this
activation energy depend on the size of the crystallite. The
transfer of a particle from a tip of the crystallite to the germ
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has a gain in volume energy�depending on the size of the
islands� and a loss in edge energy of the germ�depending on
the size of the germ�. Summing these two terms, an energy
barrier proportional to the size of the crystallite appears for
the creation of a stable germ. The exponential behavior of
the relaxation time as a function ofN is a consequence of
this energy barrier dependence. Finally, we believe that the
overall picture presented here, while still oversimplified,
seems to be complete enough to provide a general picture of
the processes leading to the shape relaxation of two-
dimensional islands at low temperatures.
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APPENDIX A: CALCULATION OF THE PROBABILITY
TO HAVE TWO PARTICLES ON THE FACET

We calculate the probabilityP of having two particles on
a facet with absorbing boundaries, knowing that at timet
�0, one particle is on one edge of the facet�abscissa 1), and
that the other particle can appear on the facet with a prob-
ability per unit time 1/�. Relatively to our Markov chain, this
probability is the probability the system in state 1 eventually
reaches state 2.

We denote byS(x,t) the probability that a particle on the
facet at positionx at time t�0 is still on the facet at timet.
Then,S(x,t) satisfies the usual diffusion equation

�S�x,t �

�t
�D

�2S�x,t �

�x2
. �A1�

This equation is to be solved with the conditions:S(x,0)
�1 for everyx�]0,L� �i.e., we are sure to find the particle
on the facet at timet�0), S(0,t)�S(L,t)�0 for every t
�i.e., the boundaries sides of the facet are absorbent�. The
solution of Eq.�A1� is

S�x,t �� 

n�0

��
4

�2n�1��
sin� �2n�1��x

L �e�[D�2(2n�1)2t]/L2
.

�A2�

To take into account the appearance of particles on the
facet, we assume the process to be Poissonian so that the
probability to have a particle appearing at timet is
(1/�)e�t/�. Thus the probabilityP that two particles are on
the facet is

P��
0

�

1/�e�
t
�S�x,t �dt. �A3�

To take into account that particles can appear on the facet on
both ends, we take���3/2, which holds at low temperatures.
This leads to the expression

P�
4�2

� 

n�0

��
1

2n�1

sin��2n�1���

�2��2n�1�2
, �A4�

where

�2�
2L2

D�2�3

, �A5�

��
�x

L
. �A6�

Using the formula13

���,��� 

k�1

��
cos�k��

�2�k2
�

�

2�

cosh��������

sinh����
�

1

2�2

�A7�

we have



n�0

��
1

2n�1

sin��2n�1���

�2��2n�1�2

��
0

�����,����
1

4
���/4,2����d��. �A8�

So that, using Eqs.�A5� and�A6�, we finally find the follow-
ing expression forP:

P�1��2 sinh�2���L�1��

sinh�2��L�
�

sinh�2���L/2�1��

sinh�2��L/2�
� ,

�A9�

where���2 /�3, and we have takenx�1 �the initial particle
on the face is at position 1 at timet�0). We can expand
expression Eq.�A9� for small � keeping the first term

P�2��L�1��o���. �A10�

APPENDIX B: PROBABILITY THAT TWO PARTICLES
STICK ON THE FACE

In this part we evaluate the probabilityP� that two par-
ticles stick on a facet with absorbing boundaries, knowing
that at timet�0, one particle is on one end of the facet, and
the other is at a positionx0 on the face. This problem can be
mapped to a 2D problem in which, at timet, the first particle
is at positiony, and the second particle is at positionx. This
virtual particle moves diffusively in a square of sideL; start-
ing from position (x0 ,a) (a is the lattice spacing�. The quan-
tity we are looking for is the probability for this virtual par-
ticle to reach the diagonaly�x of the square. Thus we can
consider the motion of the virtual particle in the triangle 0
�x�y�L. We call D(x,y) the probability that a virtual
particle starting at timet�0 from (x,y) leaves the triangle
by the diagonal,V(x,y), the probability that this particle
leaves the triangle by its vertical side, andH(x,y) the prob-
ability that this particle leaves the triangle by its horizontal
side. We use here a continuous description: the discrete
problem being far too difficult. It can be easily seen thatD,
V, andH satisfy Laplacian equations
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�D�x,y��0, �V�x,y��0, �H�x,y��0 �B1�

with the conditions

D�x,x��1, D�x,0��0, D�0,y��0, �B2�

V�x,x��0, V�x,0��0, V�L,y��1, �B3�

H�x,x��0, H�x,0��1, H�0,y��0 �B4�

for �x��0,L� and �y��0,L�,

and, moreover, we should have

D�x,y��V�x,y��H�x,y��1, �B5�

which states that the particle is sure to leave the triangle
since all sides are absorbent. Instead of calculating directly
D(x,y), we will calculateV(x,y) andH(x,y).

We first calculateV�(x,y) and H�(x,y) which are the
probability that one Brownian particle in a square with ab-
sorbing sides, respectively, leaves the square by the vertical
sidex�L and by the horizontal sidey�0. So we have

�V��x,y��0, �H��x,y��0 �B6�

with boundary conditions

V��x,L ��0, V��x,0��0, �B7�

V��0,y��0, V��L,y��1, �B8�

H��L,y��0, H��0,y��0, �B9�

H��x,0��1, H��x,L ��0 �B10�

for �x��0,L� and �y��0,L�.

The solution of Eq.�B6� with these conditions is

H��x,y��
4

� 

m�0

� sin
�2m�1��x

L

2m�1

sinh
�2m�1���L�y�

L

sinh�2m�1��
,

�B11�

V��x,y��
4

� 

m�0

� sin
�2m�1��y

L

2m�1

sinh
�2m�1��x

L

sinh�2m�1��
.

�B12�

One now can deduce the values ofV(x,y) andH(x,y) of
our initial problem with a superposition of solutions to im-
pose the conditionV(x,x)�0 andH(x,x)�0:

V�x,y��V��x,y��V��y,x�, �B13�

H�x,y��H��x,y��H��y,x�. �B14�

Using Eqs.�B5�, �B13�, �B14�, �B11�, and �B12�, we fi-
nally find an expression forD(x0 ,a):

D�x0 ,a��1�
4

� 

m�0

� sin
�2m�1��a

L

2m�1
� sinh

�2m�1��x0

L
�sinh

�2m�1���L�x0�

L

sinh�2m�1��
�

�
4

� 

m�0

� sin
�2m�1��x0

L

2m�1
� sinh

�2m�1���L�a�

L
�sinh

�2m�1��a

L

sinh�2m�1��
� .

We now have to calculate the probability that the second
particle is at positionx0 when the other one appears on the
facet. We denote this probabilityP(x0). Then the probability
we are looking for is simply

P���
0

L

D�x0 ,a�P�x0�dx0 . �B15�

We are actually able to calculate the exact probabilityP(x0),
but then we are not able to find a simple expression forP� ,
so we prefer to make the following approximation: In the
limit of small temperature, the typical time needed for a par-
ticle to appear on the facet is about�3, which is long com-
pared to the typical time a particle lasts on the facet�about
L�2 for a particle that starts near the edge�. Thus, to a good
approximation, the probabilityP(x0) has reached its station-
ary value. Taking into account only the first term of the
series, we have

P�x0��
�

2L
sin

�x0

L
. �B16�

With this expression Eq.�B15� becomes easy to calculate
and we find

P��1�

sinh
��L�a�

L
�sinh

�a

L

sinh�
�B17�

�� cosh��1

sinh� � �a

L
�

�2a2

2L2
�o�1/L2�.

�B18�

So that we find that the leading term ofP� is proportional to
1/L. We write this as
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P��

1

L
�o�1/L2� �B19�

with 
�� cosh��1

sinh� ��. �B20�

APPENDIX C: CALCULATION OF THE TIME
TO LEAVE STATE 2

We calculate in this part the average time��� for two
particles on the facet either to bond, or either one of them to
reach the boundary. This time corresponds to the time the
system stays in state 2 in the Markov chain. Using the de-
scription of Appendix B with the virtual particle in the tri-
angle, we are looking for the average time this particle needs
to leave the triangle.

Let us call S(x0 ,y0 ,t) the survival probability: i.e., the
probability a particle starting at (x0 ,y0) at time t�0 is still
in the triangle at timet. The average time��(x0 ,y0)� the
particle stays in the triangle is given by

���x0 ,y0����
0

�

S�x0 ,y0 ,t �dt. �C1�

Moreover, callingP�(x,y,x0 ,y0 ,t) the probability that one
particle starting at (x0 ,y0) at timet�0 is at position (x,y) at
time t, we have

S�x0 ,y0 ,t ��� �
�

P��x,y,x0 ,y0 ,t �dxdy. �C2�

Finally, we are only interested in��(x0,1)� since we know
that our virtual particle starts at (x0 ,a), so we have to aver-
age the time��(x0,1)� over all valuesx0. To do this we use
the approximate distribution given in Eq.�B16�:

�����
0

L

P�x0����x0,1��dx0 . �C3�

So finally, using Eqs.�C1�–�C3�, we need to evaluate

�����
0

L�
0

�� �
�

P�x0�P��x,y,x0,1,t �dxdy dt dx0 .

�C4�

We now have to calculateP�(x,y,x0,1,t). As before, we
find the solution in a square, and then by superposition, we
deduce the solution in the triangle:

P��x,y,x0,1,t ��P��x,y,x0,1,t ��P��x,y,1,x0 ,t �,
�C5�

P��x,y,x0,1,t ��
4

L2 

m,n�1

�

sin
m�x0

L
sin

n�

L

	sin
m�x

L
sin

n�y

L
e�[D(m2�n2)�2t]/L2

.

�C6�

We find ��� integrating Eq.�C4� using Eqs.�C5� and �C6�
overx0 first, and then overx andy, and finally overt, we find

����
L2

D�3 

k�1

�
1

1�4k2
sin

2k�

L �2

k
�

1

k�2k�1�� .
�C7�

We are interested in the leading term asL→�, so let us
define a functionf (u) by

f �u�� 

k�1

�
1

1�4k2
sin�ku� �2

k
�

1

k�2k�1�� . �C8�

f (u) is a normally convergent series, so that

d f�u�

du
� 


k�1

�
1

1�4k2
cos�ku� �2�

1

�2k�1�� �C9�

�
u→0



k�1

�
1

1�4k2 �2�
1

�2k�1�� �C10�

which is also convergent. The second term of the develop-
ment is of orderu2 or smaller, so that integrating Eq.�C10�,
and using it in Eq.�C7�, we find

����
2L

D�2 

k�1

�
1

1�4k2 �2�
1

�2k�1���O�1/L �.

�C11�

Thus ��� is proportional toL, and we write

�����L�2�O�1/L � �C12�

with ��
4

�2 

k�1

�
1

1�4k2 �2�
1

�2k�1�� . �C13�

APPENDIX D: CALCULATION OF THE TIME
A PARTICLE NEEDS TO GO TO CENTER

OF THE FACET

We now calculate the average real timetp,q,	 to go from
statei to statei �1 assuming the average distance between
the kinks or corners from which particles are emitted and the
germ is L/2. This again can be posed as a Markov chain
where

•state 0: no particle is on the facet;
•state 1: one particle coming from a kink is in position 1

on the facet;
•state 2: the particle is at position 2;
. . .
•statek: the particle is at positionk; and stateL/2 is ab-

sorbent.
Again we use�2 as the unit time. Using the same defini-

tion for the quantitiespi , qi , and	 i as in the main text, we
have

pi�1/2, �D1�

	 i�0, �D2�

qi�1/2, �D3�

with i�1.
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To calculatep0 and	0 we know that the real time an atom
needs to leave a kink is�3, and as there are two kinks at the
ends of the facet,�3/2 is, to a good approximation, the aver-
age time to leave state 0. Thus that we find

p0�2�, �D4�

	0�1�2�. �D5�

Callingni the average time to go from statei to the absorbent
stateL/2, we have the equations

n0�1�	0n0�p0n1 , �D6�

nk�1�
nk�1

2
�

nk�1

2
, �D7�

with k�1,

nL/2�0, �D8�

and nL/2�0. Summing Eqs.�D7� from k�1 to j, and then
from j �1 to L/2�1, and using Eq.�D8�, one finds

n1�
L�2

L
n0�

L�2

2
, �D9�

and Eq.�D6� permits to obtainn0

n0�
L

2p0
�

L�L�2�

4
. �D10�

Going back to real time, one finds the average time� a
particle needs to leave a kink and reach the center of the
facet is

tp,q,	�
L

4
�3�

L�L�2�

4
�2 . �D11�

APPENDIX E: CALCULATION OF n0

To carry out the calculation, we can first calculate thenk
for k�1. Noting thatp�q, we have from Eq.�28�

�nk�1�nk���nk�nk�1��1/p, �E1�

so that summing fromk�4 to j, and then fromj �4 to l, and
usingnl �1�0, we find

� l �1�n3�� l �2�n2�1/p� � l �2�� l �1�

2 � . �E2�

Inserting this result in Eq.�27� we find n2 as a function of
n1, in the same way, using Eq.�26�, one can deduce the
equation forn1:

n1�1�	1�p1B��1�p1A�q1n0 , �E3�

where

A�

1�
p2

p

l �2

2

1�	2�p2

l �2

l �1

, �E4�

B�
q2

1�	2�p2

l �2

l �1

. �E5�

�E6�

We now calculate the casek�0. Calling mj�n� j for
every j, and summing Eq.�21� from j to z�1, one finds

mz�mz�1�mj�mj �1�
z� j

p*
, �E7�

and Eq.�20� yieldsml�ml �1�1/2p* . Using this in Eq.�E7�
and takingj �3, one finds

m3�m2�
l �3

p*
�

1

2p*
. �E8�

Using Eqs.�23� and �24�, one finds

n�1�
1

q1*
�

p1*

q1* q2*
�

p1* p2*

q1* q2* p*
� l �5/2��n0 . �E9�

One can know obtain the value ofn0 from Eqs. �E3�,
�E9�, and�25�:

p0� 1�
q1

1�	1�p1B�n0�1�p0

1�p1A

1�	1�p1B
�q0� 1

q1*

�
p1*

q1* q2*
�

p1* p2*

q1* q2* p*
� l �5/2�� .

�E10�

Then, using Eqs.�8�–�19� we can calculateA andB:

A�
L

4�

� l �1�� l �2�

� L



�1� � l �1��1

�

�



L2� l �1��

L�L�2�� l �2�� l �1�

4

� L



�1� � l �1��1

���1�,

B�1�
1

� L



�1� � l �1��1

.
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And finally, the expression ofn0 is

n0�
1

�2

�L�2l �

4L�L�1� � � L



�1� � l �1��1��O�1/��.

�E11�

We report here only the leading term: the expressions of the
quantitiespi ,qi , and	 i permit us to calculaten0 up to order

1, but these terms are truly ugly and it does not seem rel-
evant to give them here.

Going back to real time, we find that the time�(L,l ) to
nucleate a new row on a facet is given by

��L,l ��
�3

2

�2

�L�2l �

4L�L�1� � � L



�1� � l �1��1��O��3�.

�E12�
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