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Vibrations of quantum dots and light scattering properties: Atomistic versus continuous models
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The resonant inelastic light scattering by acoustic vibration modes in spherical germanium nanocrystals is
studied theoretically. The Raman-Brillouin efficiency is calculated using quantum perturbation theory and
assuming deformation-potential interaction between the confined electronic states and the nanocrystal vibration
modes. The electronic states are described using the effective mass approximation. The vibration modes are
calculated, on one hand, using an atomistic approach based on the Stillinger-Weber interaction potential and,
on the other hand, using elasticity theory (Lamb’s model). Both models are compared depending on the
nanocrystal size and on the surface boundary conditions. By projecting the Stillinger-Weber vibration modes
on Lamb’s modes, we are able to discuss the validity of the elasticity theory and to determine the origin of the

low-frequency Raman-Brillouin scattering.
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I. INTRODUCTION

The vibration properties of quantum dots (QDs) and their
related Raman activity is the subject of a continuous interest
because fundamental questions related to the localized and
discrete nature of the electronic and vibronic density of states
are still open.

The vibration eigenmodes of a QD embedded in a matrix
having similar acoustic properties are bulklike phonons ex-
tending over distances much larger than the QD size. This is
the case, for instance, of Si/Ge, GaAs/AlAs, and InAs/InP
quantum dots. In these systems, the interactions between lo-
calized electronic states and extended acoustic waves show
interference effects in the Raman scattering!~!°

On the contrary, semiconductor [CdS (Refs. 11-13), Si
(Refs. 14—17), and Ge (Refs. 18—20)] and noble metal nano-
particles [Ag (Refs. 21-26) and Au (Refs. 25 and 27)] em-
bedded in glass or polymers show localized acoustic
vibrations.?®-30 Whereas the elasticity theory well describes
bulklike long-wavelength acoustic waves, its validity be-
comes questionable in the case of vibrations localized in very
small QDs: Up to which QD size is elasticity theory (Lamb’s
model) able to describe the vibration eigenfrequencies and
eigenmodes of quantum dots? What is the connection be-
tween the confined acoustic modes calculated using elasticity
theory and those obtained using an atomistic approach? Is
the Raman scattering activity of elastic modes different from
that of atomistic modes? These are some of the questions
addressed in this work.

The validity of elasticity theory has been discussed al-
ready in the 1980s: for instance, Tamura and Ichinokawa3!
compared the vibration spectra obtained from elasticity
theory and molecular dynamics of small particles (hundreds
of argon atoms). They showed that the elastic body approxi-
mation well describes the vibration frequencies providing
that some parameters reflecting the symmetry and periodicity
of the real lattice are included.

Recently, Leonforte and co-workers considered this prob-
lem for amorphous materials.>3* They found that elasticity
theory breaks down below a surprisingly large length scale
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of about 23 molecular sizes. Cheng et al.>>~37 recently stud-

ied the size dependence of the vibration density of states of
freestanding germanium and silicon nanocrystals using a two
parameter (bond stretching and bond bending) valence force
field (VFF) model. By projecting Lamb’s modes on the VFF
vibration modes, they showed that Lamb’s model (and thus
elasticity theory) starts to break down for a quantum dot with
a diameter less than 4 nm. In addition, the vibration density
of states of such small QDs is dominated by surface modes
whose frequency is size independent.

Calculations of Raman scattering efficiency require the
modeling of both electronic states and vibration modes as
well as their interaction mechanisms. In order to do so, an
atomistic description of the vibration modes and first-
principles calculations of the electronic states are needed.
Most of the reported studies using atomistic calculations of
the vibration eigenmodes use a bond polarizability model*®3
to generate the Raman spectra. This model does not explic-
itly take into account the electronic states. However, based
on symmetry arguments and using few adjustable param-
eters, it gives a good description of the off-resonance Raman
spectra. For this reason, this approach has been widely used
in the literature,3-40-42

On the other hand, only few attempts to include the elec-
tronic states in the calculation of the resonant Raman scat-
tering have been reported. Since first-principles calculations
(Hartree-Fock, density functional theory, or time-dependent
density functional theory) can only treat a limited number of
atoms, people have wused the envelope function
approximation®? and/or effective mass approximation* to
overcome this limitation. Sirenko et al.* considered the
deformation-potential interaction of bulklike acoustic
phonons with confined electronic states to calculate the Ra-
man scattering of embedded CdS nanocrystals. Chamberlain
et al.* considered the Frohlich interaction of confined opti-
cal phonons with confined electron-hole states. Gupalov and
Merkulov*’ calculated the line shape and polarization prop-
erties of the acoustic phonon Raman scattering, including the
complex structure of the electronic states due to confinement
and spin-orbit interaction. Recently,*® some of us have re-
ported on resonant Raman scattering in embedded germa-
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nium QDs. The vibration modes were calculated in the frame
of elasticity theory, but only the contribution of pure radial
modes was considered.

In this work, we combine both an atomistic description of
the QD vibration modes and a quantum description of the
light scattering in order to study the influence of the atomis-
tic approach on the vibration mode frequencies and eigen-
vectors and on their resonant Raman spectra.

Calculations of the Raman scattering efficiency are per-
formed for vibration modes obtained from both atomistic and
elastic models. The general framework of this calculation is
given in Sec. II. Section III details the calculation of the
vibration eigenmodes using both the atomistic (Sec. IIT A)
and the elastic models (Sec. III B). The electronic states as
well as the electron-phonon coupling are obtained using the
general formalism described in Sec. IV. In Sec. V, the atom-
istic and elastic descriptions are compared by inspecting both
the vibration modes and their Raman spectra. The rules for
the Raman activity naturally come out from our calculations.
They are discussed and compared to experimental data and
to theoretical predictions from the literature. Finally, size ef-
fects are considered. The results are obtained for both stress
free and blocked surface boundary conditions. In Sec. VI the
validity of the different approximations is discussed.

II. RAMAN-BRILLOUIN SCATTERING EFFICIENCY

The resonant Raman scattering efficiency is calculated us-
ing third order perturbation theory. The probability per unit
time for an incident photon to get inelastically scattered
through a Raman process is dominated by the resonant
term,*’
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where Q, @;,., and @44, are the frequencies of the vibration
mode, the incident and scattered photons, respectively. The
double sum 2 ; in Eq. (1) runs over all electronic eigen-
states. H ,, H’, and H’;, are, respectively, the electron-phonon,
electron-scattered photon, and electron-incident photon
Hamiltonians. For a phonon creation (absorption), i.e., a
Stokes (anti-Stokes) process, the * sign of Eq. (1) must be
replaced by + (—). Wave functions | 7)=|¢) ® | ¥) describing
quantum states have an electronic and a nuclear part: |¢) and
|¥), respectively. The final electronic state |¢by) of |7
=|¢)®@|¥)) has to be the same as |¢;) of the initial state
[7:)=|#;) ® |¥,) because in a Raman process it is the excited
electron-hole pair that recombines after phonon emission or
absorption (geminate recombination). |¥;) and |\Iff) are ini-
tial and final states of the phonon bath. Finally, Aw;=E,
—E,;, where E, is the energy of electronic state |¢;) and T'; is
its homogeneous broadening.®® In this paper, all I'; have been
fixed to 1 cm™!. For a detailed study of the homogeneous
broadening on the Raman intensity see Ref. 48. Our aim is to
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generate the Raman spectra of all the QD’s vibration modes
using Eq. (1). The latter are obtained following two ap-
proaches: on one hand, using Lamb’s model,>! and, on the
other hand, using an atomistic description of the interaction
between atoms based on the Stillinger-Weber (SW) empirical

potential 2~

II1. VIBRATION EIGENMODES
A. Atomistic description
1. Eigenstates

A judicious basis for the nuclear states |¥) can be ob-
tained by diagonalizing the unperturbed Hamiltonian,
N-1

1PV o g
u

N-1 13»2
Hy=2 - > ()
i=0 <M j=0;a,BE{x,y,z} g’ ’9“1'

where Vi, is the interatomic potential, p,, m;, and u; are,
respectively, momentum, mass, and displacement vector of
nucleus i from 1ts equilibrium position. Changing COOI'dl-

nates u to \mu and, thus, the conjugate momentum p to
p,-/\emi, Ho reads

N-1 = N-1
NP ’ ; VAN 1018
P SUSS ”
i=0 2 i j= Oaﬁe{x”}Z\me o7u &u ’
(3)
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PV
where Blk,l]=—= T dugau? is the dynamical matrix. | stands

for 3i+a, where i is the atom number and a=0, 1, or 2
denotes x, y, or z direction. In the following, we will only use
the extended coordinates /: m; will thus refer to m; such that
1=3i+a. B[k,l] is a symmetric real matrix by construction. It
can thus be diagonalized in real space. Let P[k,[] be the
matrix formed by the normalized eigenvectors of B. Then,
we have P~'BP=diag[\y- - -\3y_; ], where \, is an eigenvalue
of B and Q,:v‘x the eigenfrequency. Let ©; be the normal
coordinate ®,=%,P~'[1,k]Ju;, and 11, its conjugate momen-
tum; H{)\/ now reads

3N-1 2 2
Iy Q
N l L 2
Hy = —+—0 5
0 [ 2t ,}, (5)

which is the Hamiltonian of 3N uncoupled harmonic oscilla-
tors.

The normalization of the vibration eigenmodes is often
discussed in the literature and is sometimes misunderstood.
Our diagonalization procedure prevents any mistake con-
cerning that point: The normalization is imposed by the con-
dition that P is a unitary matrix, and therefore P'P=" PP=1I.
The displacement field operator of atom i reads (see the Ap-
pendix),
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3N-1

h
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where a,t and q, are, respectively, the creation and annihila-
tion operators of vibration mode k.

2. Semiempirical potential

To use Eq. (6), one needs the P matrix and the eigenfre-
quencies {);. We calculate the vibration modes of spherical
nanoparticles whose atoms (germanium) form a diamond
crystal structure. The interatomic interaction is described by
a SW potential >>>° This semiempirical potential has been
designed for semiconductors and contains a pair potential
and three-body interaction terms. The parameters used in this
work are from the original papers.”?>* We first relax the
nanoparticle strain by minimizing the overall potential en-
ergy using the conjugate gradient algorithm. This procedure
ensures that all vibration eigenfrequencies are real. Our
model omits the possible existence of surface reconstructions
and dangling bonds. These aspects could correctly be ad-
dressed using more sophisticated techniques (for instance,
density functional theory or tight binding). Concerning the
elastic stress at the nanoparticle surface, two limiting cases
are studied here: (i) stress free (SF), where the nanoparticle
moves freely in vacuum, and (ii) blocked surface (BS),
where the surface atoms are fixed, a situation which corre-
sponds to a nanoparticle embedded in a rigid matrix.

We calculate the dynamical matrix B defined in Eq. (4)
from the analytic expression of the potential energy. B is
diagonalized to obtain the eigenfrequencies (), the eigenvec-
tors, and hence the P matrix (Sec. III A 1). We would like to
underline that the dynamical matrix is here diagonalized
without any assumption concerning the symmetry of the
eigenmodes.’®3” Moreover, we checked that all eigenvalues
are real and positive.

B. Lamb’s model: Elasticity theory

Lamb’! has described the vibration modes of an elastic
and isotropic homogeneous free sphere using elasticity
theory. The displacement vector u is obtained from the
Navier-Stokes equation,

i - s
Pk v? grad[div 1] + v2 rot rot i. (7)
The vibration properties are described by only two indepen-
dent parameters, v; and vy, the longitudinal and transverse
sound velocities, respectively. In spherical coordinates, the
displacement field u reads

'Zn,l,m = An,l,m grad[il(Qﬁ,lymr) Ylm( 09 ¢)]
+ Bn,l,m rOt[jl(Q;T;,l,mr) Ylm( 0’ d’)’_:]
+ Cn,],m I'gt r(—;t[jl(erz:l,mr) Y[m(ﬁ, ¢)ﬂ s (8)

where n, [, and m are integers, j, are the spherical Bessel
functions, and Y, are the spherical harmonics. Q,Ll and

Jm
QF,  define the dispersion relations
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The first and third terms of Eq. (8) are associated with
spheroidal modes. The second term is for pure torsional
modes. The dispersion relations and continuity of the dis-
placement and stress fields at the nanoparticle surface allow
us to calculate the eigenfrequencies (),,;,, and to obtain the
amplitudes A, ; ,,, B, ;»» and C,, ;.. As will be discussed later,
the electron-phonon interaction Hamiltonian is proportional
to the dilation associated with the displacement field (diver-
gence). Thus, pure transverse modes are not Raman actives,
and hence modes with only B#0 will not be considered
here. In order to compare vibration modes and Raman spec-
tra calculated using the atomistic description and elasticity
theory, we obtain the longitudinal and transverse sound ve-
locities in the (100) and (111) directions by applying our
atomistic model to bulk germanium. The average sound ve-
locities are then calculated following the procedure described
in Ref. 48. We obtain v7=3410 ms™! and v, =5498 ms~'.
These values are close to the experimental ones:’’ vy
=3250 ms~' and v;=5250 ms~'. Moreover, for a given
Lamb mode, the displacement of each atom of the atomistic
model is calculated using Eq. (8). As for the atomistic de-
scription, this vector is normalized (see the Appendix). This
gives the Lamb eigenvectors. In order to compare the atom-
istic description and the Lamb theory, both eigenvectors in
matrix P (see Sec. III A 2) and Lamb eigenvectors will un-
dergo the same treatment.

IV. ELECTRONIC STATES
A. Wave functions

The electronic states are described in the frame of the
effective mass approximation, assuming parabolic band®
dispersion. We emphasize the fact that a complete theory of
resonant Raman scattering would require a correct descrip-
tion of the electronic states, including excited states, using,
for instance, first-principles calculations. The drawback of
such theories is, of course, the computational cost which
forbids the calculation of the Raman intensities of a thousand
atoms. Nevertheless, in this work, our aim is to study the
influence of an atomistic description of the vibrational modes
on the Raman spectra and to compare with the predictions
based on elasticity theory. Furthermore, the Raman scattering
efficiency calculated using an atomistic description of the
vibration modes usually involves a Raman tensor based on
the bond polarizability model.3*3® This approach is very
useful for the interpretation of Raman experiments per-
formed with an optical excitation energy away from any
electronic transition, whereas the experiments on nanocrys-
tals are usually performed under resonant excitation in order
to overcome the very low scattering volume. Hence, our
model, though very simple for the description of the elec-
tronic states, allow us to simulate resonant Raman spectra,
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which could be compared to available experimental data.

In addition to the effective mass approximation, we use
the envelope function approximation.**** Electronic wave
functions are ¢(r)= () up,x(r), where  is the slowly vary-
ing envelope wave function and ug,.;, a Bloch function. We
assume that the electronic states could be described using a
single ug,.;, function. For a spherical nanocrystal of radius a
with an infinite confining potential well, the envelope wave
functions of electrons (and holes) read:*

1 2 r
gnlm(}):jll(—Kl)\/;jl(Kn,l;>Ylm(9’¢)7 (11)

where k,; is the nth zero of the spherical Bessel function
Ji(r). Y,,(6, @) are spherical harmonic functions. The quan-
tized energies are given by

ﬁ2 ; 2
En,1=_*(K J) , (12)

2m a

where m” is the effective mass of the electron or hole.

Since most of the published Raman experiments on Ge
nanocrystals were performed under resonant excitation of the
confined E| transitions, we shall consider, in the following,
electronic transitions between valence and conduction states
of germanium around the £ band gap. As shown by Cardona
and Pollack,”’® the energy-band structure around the E,
band gap of Ge is actually more complex than a simple pa-
rabola and is much better described by the k- p theory. More-
over, in order to calculate the Raman selection rules (polar-
ization dependence), one should take into account the mixing
of states with different envelope angular momenta.”® Our de-
scription of the QD electronic states could thus be greatly
improved, but is acceptable since our aim is to focus on the
vibrational dynamics description and its consequences on the
simulations of resonant Raman spectra.

In addition, the high joint density of states at the £ point
is here taken into account by considering infinite effective
masses. E,; is set to zero. Thus, resonance effects do not
depend on the nanoparticle size a. Accordingly, we shall
limit the values of n and / and check the effect on the simu-
lated Raman spectra. In this case, changing the excitation
energy or homogeneous broadenings would not modify the
relative Raman intensities of the different vibration modes. It
would only affect the overall scattering efficiency.

B. Electron-phonon interaction

The electron-phonon interaction is described following
the work of Pikus and Bir,%® who calculated the modulation
of the electronic energies and wave functions due to a uni-
form static strain in the frame of the envelope function for-
malism. Here, only the first order term of the Hamiltonian,
proportional to the dilation, is retained,

H,,=Ddivu, (13)

where # is the displacement field and D is the deformation-
potential (DP) energy that depends on the considered Bloch
function (i.e., on the electronic band).

Hence, the electron-phonon term in Eq. (1) reads
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<77p|th| 77q> = <\pr| ® <¢p|th|¢q> ® |‘Pq>
<[ Di, G i A
vol
(14)

In the frame of elasticity theory, u(7) is a continuous dis-
placement field and div u(7) can be evaluated analytically at
each point 7 from Eq. (8).

In our atomistic model, the displacement field is discrete
by nature and could not rigorously be derived. In order to
evaluate the divergence of the displacement, we define a con-
tinuous displacement field using

i(7) = A, (R ))e™7 - R (15)
J

and obtain the divergence term in Eq. (14),

(W, |div u(r)|V,)

24 ) . (F—R)?
= ?E <\I,p|uj|\l,q> . (R]— f)exp(— _52'L> .
j

(16)

In Egs. (15) and (16), R; is the equilibrium position of
nucleus j, A is a normalization, factor, and & is a parameter
of the order of the interatomic distance (half the interatomic
distance in our case). We have checked that the final results
are not sensitive to & as long as realistic values are used.
Equation (15) turns the discrete atomic displacements to a
continuous field, and, strictly speaking, this cannot be justi-
fied. However, such a procedure is standard and has been
used to establish Eq. (13) (see Ref. 60). Moreover, that trans-
formation is computationally cheap. It does not create any
problem with surface atoms (compared to a divergence cal-
culation based on the Green-Ostrogradski theorem). Terms
(W, |uj,|¥,) are calculated from Eq. (A10) (Appendix). In
order to fully compare the elasticity theory and the atomistic
model, we estimate the effect of evaluating div u# from Eq.
(16) in the frame of Lamb’s model. This is performed, on
one hand, by calculating analytically div # (we will refer to
this calculation as the “continuous Lamb” model) and, on the
other hand, by calculating div u using Eq. (16) (we will then
refer to this as the “discrete Lamb” model). The “atomistic
model” of Sec. III A 2 inevitably uses Eq. (16).

By turning the continuous integration in Eq. (14) to a
discrete sum running over the atomic positions, we obtain

<77p|th| 77q> = KE é’:plpmp(ﬁi)gnqlqmq(ﬁi)D<\Pp|div ﬁ(§1)|‘yq>,

(17)

where K is a constant’! and, as a reminder, |¥) is a phonon
state, and ¢ describes the electronic envelop wave functions.
Equation (17) directly shows that the electron-phonon cou-
pling is strong if both electronic density and divergence of
the displacement field are coincidentally significant.
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C. Electron-photon interaction

The electron-photon interaction Hamiltonian in Eq. (1)
reads

ep- AP
o= AD

14

(18)

m€
where A is the vector potential associated with the incident
radiation”? and p the electronic momentum operator.

The electron-photon matrix element in Eq. (1) is
(m,|H,|n,)=(¢,|H,| (¥ ,|¥,). Using the electronic wave
functions ¢,(r)={,(r)uf,,(r) and retaining only the inter-
band term,°! one gets

(B,|H.| )

f . . . )
- ;7 J J f £, (N & (Pugloen(Pgrad ufyoe,(r) AP dr.
(19)

Assuming that f;(?) is a slowly varying function on the
length scale of the interatomic distance, Eq. (19) can be
transformed into the discrete sum,

(BplH|b) =2 &RV (R)L,- AR, (20)

running over all atoms; I, is proportional to the atomic di-
pole momentum and depends only on the functions uf? (7).

In this work, we are interested in crystals of few nano-
meters excited at wavelengths N> a (a being the nanocrystal
radius; N is typically 500 nm). Hence, the vector potential

A(r) inside the nanocrystal is quasiuniform. In this case, off-
diagonal terms of the electron-photon interaction are negli-
gible since the electronic wave functions form a set of or-
thogonal functions [Eq. (20)]. As a consequence, only
diagonal terms of the electron-phonon interaction can be re-
sponsible for Raman activity [Eq. (1)]. As already discussed
in a previous paper,*® this noticeable size effect has impor-
tant consequences on the light scattering properties of nano-
objects. For instance, the Raman selection rules are deter-
mined by the ability of a given vibration mode to modulate
the diagonal terms of the optically excited electronic density.
When increasing the size of the nanocrystal, off-diagonal
terms of the electron-phonon Hamiltonian come out, whereas
diagonal terms cancel.

V. RESULTS

The resonant Raman spectra are simulated using Eq. (1).
The latter is calculated using Egs. (17) and (20). Constants D
and K [in Eq. (17)] and ;at-g [in Eq. (20)] are factorized in a
proportionality factor. We evaluate the resonant Raman in-
tensity for each vibration mode of the nanocrystal. To allow
for a comparison with experiments, the simulated Raman
spectra are convolved with a Lorentzian function of 3 cm™!
linewidth (typical spectral resolution).
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Raman Intensity (arb. unit)

FIG. 1. (Color online) Simulated resonant Raman spectra of a
Ge QD with 885 atoms (around 3.5 nm diameter) calculated using
the continuous Lamb model for both stress-free (SF) and blocked
surface (BS) boundary conditions. The vertical lines show the cal-
culated intensities before convolution with the Lorentzian function.

A. Elasticity theory

1. Convolution effects

We first analyze the Raman activity of the vibration
modes calculated using Lamb’s model.

Unlike in previous published works,*’*® here, we report
on the Raman activity of not only the pure radial (1,0,0)
mode but all spheroidal modes (fundamental and overtones).
The excitation wavelength is fixed at A=532 nm close to
resonance with the confined E| transitions of the germanium
nanocrystals. The maximum values of the envelope wave
function quantum numbers are fixed at n,,,=5 and /[ ,,=5
[see Eq. (11)].

Figure 1 presents convolved and unconvolved Raman
spectra of a germanium QD (885 atoms) calculated using
Lamb’s model for both stress-free and blocked surface
boundary conditions. Comparing the convolved and uncon-
volved spectra in Fig. 1 allows one to identify the vibration
modes that could be observed experimentally in the Raman
spectra and which modes do contribute to a single Raman
peak. The relative Raman intensities of the different Lamb
modes are reported in Table I for stress-free boundary con-
ditions.

We found that the Raman active Lamb modes have an
even value of /, as observed experimentally.!"'%2 This is in
agreement with the predictions reported years ago by
Duval,®® who used a qualitative analysis of the light scatter-
ing process based on the rotation group symmetry. It is
worthwhile to underline that here no assumption is made
concerning the Raman selection rules. The Raman activity of
the vibration modes comes out as a result of the simulations.
It is a direct consequence of the optically excited electronic
states and their modulation by the deformation fields via DP
interaction. Moreover, our results disagree with a recent pub-
lication by Kanehisha® (see also Goupalov et al.®®) who pro-
posed that vibration modes with odd / are the Raman active
modes, whereas those with even [/ should be observed by
means of infrared absorption. This prediction was based on
qualitative arguments which did not take into account the
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TABLE 1. Raman active Lamb modes of a 885 atoms Ge QD
with stress-free boundary conditions. The relative intensities are
normalized with respect to the intensity of mode (100).

Mode frequency

(ecm™) Relative Raman intensity Lamb mode (nim)
26.89 0.16 (1,2, 0)
40.13 1 (1,0,0)
47.82 0.063 (2,2,0)
50.67 0.014 (1, 4, 0)
80.26 0.007 (2, 4,0)
82.04 0.038 (3,2,0)
96.07 0.037 4,2,0)
99.25 0.055 (2,2,0)
110.25 9.4x10°6 (3,4, 0)
123.72 0.020 (5,2, 0)
132.52 24%107° 4, 4,0)
152.55 0.022 (3,0, 0)
205.04 0.014 4, 4, 0)
257.23 8.51x1073 (5,5,0)

explicit form of the electron-phonon interaction Hamiltonian.
The symmetry of a vibration mode is not sufficient to deter-
mine its Raman activity.

Coming back to Fig. 1, one has to notice that the Raman
spectra due to Lamb’s modes are discrete. This is a conse-
quence of the size induced quantization of the vibration
eigenmodes.®® Moreover, a strong peak in the convolved Ra-
man spectra can have two different origins. It corresponds
either to the scattering by a single vibration mode with a
strong Raman activity or to that by several unresolved
modes. This is particularly important for the interpretation of
the measured low-frequency Raman signal.

Since the number of vibration modes calculated using
Lamb’s model is rather small, only few modes contribute to
the Raman peaks in Fig. 1. For instance, only the fundamen-
tal radial (/=0) and quadrupolar (/=2) modes do contribute
to the most intense Raman peak. The contribution of the
(1,2,0) mode is one order of magnitude smaller than that of
the (1,0,0) mode because of the weaker dilation field associ-
ated with quadrupolar vibrations.

As will be shown later, the effect of the vibration density
of states is more important for the atomistic description since
all vibration modes are involved in the light scattering: typi-
cally, thousands of vibration eigenmodes distributed on few
hundreds of wave numbers.

2. Discretization effects

This subsection discusses the effects of the continuous
displacement field introduced by Eq. (15) on the simulated
Raman spectra and on the comparison between the elasticity
theory and the atomistic description.

Figure 2 presents the Raman spectra of a QD (885 atoms)
calculated using both continuous and discrete Lamb models
for both stress-free and blocked surface boundary conditions.
The only difference between these two models lies in the
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— Continuous Lamb Modell,
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FIG. 2. (Color online) Resonant Raman spectra of a 885 atom
Ge QD simulated using the continuous Lamb model and the dis-
crete Lamb model for both SF and BS boundary conditions. The
spectra are convolved by a Lorentzian function.

evaluation of the deformation field associated with each vi-
bration mode. In the low-frequency range (0—90 cm™!), the
Raman spectra calculated using the discrete Lamb model
agree well with the spectra generated with the continuous
Lamb model. At higher frequencies, some differences are
visible due to the fact that the wavelengths of high-frequency
vibrations [see Eq. (9)] become comparable to the inter-
atomic distances [Eq. (10)] and thus our discrete description
naturally fails.

The comparison presented in Fig. 2 validates the calcula-
tion procedure of the displacement vector divergence for the
atomistic description at low-frequency (below 90 cm™!). In
the following, we shall focus on the comparison between the
continuous Lamb model and the atomistic model.

B. Atomistic description

The atomistic description allows us to determine all vibra-
tion modes, including optical modes contrary to Lamb’s
theory. Moreover, in the atomistic description, the crystal
anisotropy and the presence of inhomogeneities (e.g., alloy-
ing effects®’ and strain relaxation effects) are taken into ac-
count. In particular, the surface modes come out naturally.
The cost to pay for that is the large computational time: For
a QD containing N atoms, a 3N X 3N dynamical matrix has
to be diagonalized and produces a 3N X 3N transfer matrix P.
Quantum dots containing up to 1800 atoms are studied in
this work.

Figure 3 shows the vibration density of states and reso-
nant Raman spectra of a 885 atom QD simulated for both
stress-free and blocked surface boundary conditions. The cal-
culations were performed for both acoustic and optical vibra-
tion modes. However, the latter are not visible in the Raman
spectra because their interaction with confined electrons (and
holes) via the DP mechanism is strong only when the wave-
length of the excited electronic states is comparable to the
vibration wavelengths, i.e., for envelope wave functions as-
sociated with large n or [. Since we used limited values of n
and [, optical vibration modes do not show a realistic Raman
activity. Increasing n and / would not help because the para-
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FIG. 3. (Color online) Vibration density of states and resonant
Raman spectra of a spherical Ge QD consisting of 885 atoms. Both
convolved and unconvolved Raman spectra are shown. The upper
graph refers to the SF boundary conditions, and the lower graph to
the BS boundary conditions.

bolic band approximation is not valid for large quantum
numbers. In addition, the calculation procedure of the dis-
placement field divergence is not suitable for high-frequency
vibration modes, as shown in Fig. 2. Hence, only the low-
frequency range (0—90 cm™!) is relevant in Fig. 3. Thereaf-
ter, we shall focus on the low-frequency Raman scattering
due to acoustic vibration modes only.

As already mentioned above, the atomistic description
gives a complete set of vibration eigenmodes. With increas-
ing number of atoms (particle size), the vibration eigenfre-
quencies form a quasicontinuum. This quasicontinuous spec-
trum could be responsible for strong Raman peaks in the
convolved spectrum (see, for instance, the low-frequency
lines in Fig. 3). The atomistic description can thus indicate
whether a strong Raman intensity is due to a single very
active vibration mode or, rather, to a high density of fairly
active modes.

C. Comparison of atomistic and Lamb theories

Figure 4 shows resonant Raman spectra of a 885 atom Ge
QD simulated for free and blocked surface boundary condi-
tions. The vibration eigenmodes were calculated in the frame
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FIG. 4. (Color online) Simulated resonant Raman spectra of a
Ge QD consisting of 885 atoms. The vibration eigenvectors are
calculated using either Lamb’s model or the atomistic description.
Both SF and BS boundary conditions are considered.

of both the atomistic description and elasticity theory.

First, the Raman lines calculated using Lamb’s model and
the atomistic model do not occur at exactly the same fre-
quencies. However, the agreement between the two models
is very good considering that the anisotropy of the sound
velocities is not taken into account in Lamb’s model:'® Here,
directionally averaged sound velocities were used.

Above 100 cm™' (Fig. 4), the Raman intensity generated
with the atomistic model is larger than that calculated with
Lamb’s model. As already discussed, the calculation of the
displacement vector divergence becomes questionable for
this frequency range (see Fig. 2). Moreover, above 100 cm™,
the phonon density of states is very high (see Fig. 3), leading
to cumulative numerical errors in the convolved Raman
spectra. Hence, we shall focus our discussion on the lowest
frequency range, which is usually investigated in
experiments.!'1-16:62

In order to compare quantitatively Lamb’s model and the
atomistic model, we project the Raman active vibration
eigenmodes of the atomistic description on Lamb’s modes
following the work of Cheng et al.’® Let !, be the nth
vibration mode of the atomistic model and «, , the jth
mode of Lamb’s model (n and j being a set of quantum
numbers); the mode projection quantity (MPQ) R,; reads

>, i 2
Rﬂj = E uZtom : uiamb . (21)

position

By projecting atomistic modes on Lamb modes, it is possible
to evaluate the “Lamb character” of each atomistic mode.
Table II sums up the mode character analysis for the first two
vibration eigenmodes of the atomistic model responsible for
the lowest frequency peak in Fig. 3. The table only refers to
the case of stress-free boundary conditions. The same quali-
tative conclusions are found for blocked surface boundary
conditions. Notice that, by construction, Lamb modes are
orthonormalized for the continuous scalar product {u'|u')

= [[[#(R)-@(R)d®R and not for the discrete one | ')
=3l - , so that the sum of the MPQs for a given atom-
istic modes on Lamb modes may differ from 1.
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TABLE II. MPQ of the first two atomistic vibration eigenmodes
on the pure radial and quadrupolar Lamb modes. These modes give
rise to the main Raman peaks in Fig. 4.

Atomistic mode Lamb mode (n,l,m)

frequency frequency

(cm™) (em™") MPQ
(1, 2, 0) [26.89] 0.44
(2,2, 0) [47.82] 0.46

24.23 (3, 2, 0) [82.04] 0.30
(4, 2, 0) [96.07] 0.38
(5,2,0) [123.72] 0.36

40.25 (1, 0, 0) [40.13] 0.52

From Table II, one can see that the vibration modes cal-
culated in the frame of the atomistic model project on several
Lamb’s modes. The first two Raman active modes of the
atomistic model, which contribute to the strong low-
frequency Raman peak (shoulder at 40.25 cm™' and peak at
24.23 cm™! in Fig. 3 SF), involve the fundamental pure ra-
dial (1,0,0) and quadrupolar (fundamental and overtones)
modes (1,2,0).

The peak at 40.25 cm™' is composed mainly of the (1,0,0)
mode as attested by the corresponding MPQ=0.52. MPQ on
other Lamb modes are smaller than 0.05. This result comple-
ments the work of Cheng et al® By projecting Lamb’s
modes on atomistic ones, they conclude that the Lamb mode
(1,0,0) is composed of more than one lattice mode when
particle diameters become smaller than 4 nm.

Notice that despite its rather high frequency
(123.72 cm™"), the overtone mode (5,2,0) has a significant
contribution to the weak shoulder at 24.23 cm™, as indicated
by the corresponding MPQ=0.36. We have increased the
number of Lamb modes onto which the atomistic modes are
projected. We found that the projection of the atomistic mode
at 2423 cm™' on the Lamb mode (6,2,0) is very weak
(MPQ=0.02). Hence, Table II gives the main Lamb decom-
position of the first two atomistic modes.

One can notice in Fig. 4 that the Raman intensity of the
quadrupolar mode is smaller when using the atomistic
model. Indeed, with Lamb’s model and for stress-free bound-
ary conditions, it is about 16% (see Table I) of the breathing
mode intensity. On the other hand, in the atomistic model, it
falls to 6.4%. In the case of fixed boundary conditions, it
decreases from 18% (Lamb) to only 2.8% (atomistic).

Therefore, though the agreement between the low-
frequency Raman spectra simulated with the atomistic model
and the Lamb model is good (as shown in Fig. 4), the Raman
active vibration modes differ but have mainly the same sym-
metry (pure radial or quadrupolar).

D. Size effects

Figure 5 shows the size dependence of the Raman spectra
simulated using both Lamb’s model and the atomistic model
for both stress-free and blocked surface boundary conditions.
Figure 6 reports the frequencies of the first two atomistic
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FIG. 5. (Color online) Resonant Raman spectra simulated using
vibration eigenmodes from Lamb’s model and from the atomistic
model for both stress-free (lower panel) and rigid (upper panel)
surface boundary conditions. The quantum dot diameter is indicated
for each plot.

modes (see Table II) responsible for the lowest frequency
Raman peak. These modes are labeled (n,2,0) and (1,0,0)
according to their projection on Lamb’s modes (Table II). In
the spectra simulated using Lamb’s modes, the lowest fre-
quency Raman peak is due to the (1,2,0) and (1,0,0) modes
(Fig. 1). Their vibration frequencies are plotted in Fig. 6 as a
function of the QD size.

It is well known that the frequencies of Lamb’s modes
scale as the inverse of the nanoparticle diameter. This result
could easily be deduced from Eq. (8). It has been used to
extract from the low-frequency Raman data the average size
and size dispersion of semiconductor and metal
nanoparticles.!1199268 The comparison with the frequencies
of the (1,0,0) and (n,2,0) atomistic modes shows that this
law is well verified.

For the pure radial and quadrupolar vibrations, the fre-
quency shift between Lamb’s and atomistic modes does not
exceed 3.5 cm™! for a free particle surface and 4 cm™! for a
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FIG. 6. (Color online) Frequencies of the first two Raman active
modes as a function the inverse QD radius. Dashed lines are linear
regressions for the two Lamb modes.

fixed particle surface. This difference between the vibration
frequencies comes from the definition of the diameter of the
spherical QD. Here, the radius is defined by the distance
between the mass center and the most distant atom plus half
the lattice parameter in the case of free surface boundary and
by the distance between the mass center and the most distant
atom in the case of blocked surface. Since the frequencies of
Lamb’s modes scale as the inverse of the QD radius, they are
sensitive to the exact definition of this parameter especially
in the case of very small QDs.

Our calculations show that even for a particle diameter
less than 4nm, the frequencies of Lamb’s and atomistic
modes are very similar. Hence, Lamb’s theory still gives a
good approximation of the vibration frequencies. This is sur-
prising since, as it has been shown by Cheng et al.,’> the
description of QD vibration modes in terms of Lamb’s
modes breaks down for a particle diameter smaller than
4 nm. Our analysis of the Raman spectra and Fig. 6, in par-
ticular, show that though Lamb’s model breaks for small di-
ameters, the frequencies of the Raman active modes go on
scaling as the inverse of the QD size at least for diameters
larger than 2.38 nm. This point will be discussed below.
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VI. DISCUSSION AND MODEL VALIDITY

A. Electronic eigenstates

As already mentioned, the envelope function approxima-
tion is unable to describe the electronic properties of QD
having less than 200 atoms. First-principles calculations
would be more suitable (but also more expensive in compu-
tation). Moreover, we assume that the nanoparticle behaves
as an infinitely deep potential well: vanishing envelope wave
functions at the QD surface. This assumption is certainly not
true for very small QDs. The electronic states could extend
out of the QD depending on the QD/matrix band offset.*0
Such effects would modify the Raman activity of the vibra-
tion modes, as discussed in Sec. IV B.

Despite these limitations, the envelope wave function ap-
proximation allows one to generate resonant Raman spectra
of QD vibration modes in a rather simple way and allows
precise comparison with experiments.*

B. Vibration eigenstates

In our analysis of the Raman scattering and for the com-
parison with the atomistic model, we have considered a lim-
ited number of (n,l,m) Lamb modes (maximum n is 5,
though this number should be extended further®). Actually,
from Eq. (17), vibration modes and electronic wave func-
tions interact efficiently, provided their spatial variation oc-
curs on the same length scale (i.e., similar wavelengths).
Therefore, since we used a limited number of electronic
states (in order to keep within the effective mass approxima-
tion), we have also used a limited number of vibration Lamb
modes. However, we checked that increasing the number of
Lamb modes (as well as increasing the number of electronic
eigenstates) does not modify the Raman spectra in the low-
frequency range (quadrupolar and breathing mode Raman
activity).

Moreover, the semiempirical potential of SW becomes a
poor approximation for very small QDs (less than a hundred
atoms). The structural and the vibrational properties are cer-
tainly not described correctly. Especially, one of the major
drawbacks of the SW potential is that it fails to model the
surface relaxation (surface stress) since it involves only near-
est neighbor interaction. Surface relaxation typically in-
volves atoms at two or three atomic distances (of the order of
the interaction range between atoms) in the vicinity of the
surface. Since the effect of the surface relaxation on struc-
tural and phonon properties is proportional to the surface/
volume ratio, we expect a significant effect of the surface
stress on the vibrational properties for very small QDs.®
Using the SW potential, we do not probe these surface stress
effects, but we investigate confinement effects of vibration
modes. This is why the frequencies of the quadrupolar and
breathing modes in Fig. 6 inversely scales as the QD size in
our atomistic simulations. The particle size becomes the
main characteristic length of the problem (the other one is
the interatomic distance).

VII. CONCLUSION

We have reported the first attempt to couple an atomistic
description of QD vibration modes to a quantum description
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of the resonant Raman scattering. The resonant optical exci-
tation of confined electronic transitions is usually used to
overcome the low scattering efficiency of QDs. Thus, a com-
plete modeling of the resonant light scattering process is
needed for the interpretation of experiments. Moreover, the
Raman spectra simulated with the Lamb and atomistic SW
vibration modes were compared. Unlike in a previous
work,* we have not restricted the discussion to a single par-
ticular Lamb mode. All spheroidal vibration eigenmodes
were considered.

Our main findings can be summarized as follows: (i) We
found a good agreement between the vibration frequencies of
acoustic modes calculated using Lamb’s model and the ato-
mistic approach. For a surface-free QD, the frequency shift
of the radial and quadrupolar Lamb modes (1,0,0) and
(1,2,0), with respect to the corresponding atomistic modes, is
smaller than 3.5 cm™' for a QD diameter larger than 2.38 nm
(i.e., a 275 atom QD). (ii) In the atomistic SW model, the
vibration modes that are responsible for the main low-
frequency Raman peak, usually observed in experiments,
project principally onto the pure radial and quadrupolar
Lamb modes (fundamental and overtones). This confirms the
interpretations of the low-frequency Raman scattering in
semiconductor quantum dots based on Lamb’s model, and
disagrees with recently suggested revisions.®* (iii) In the
frame of the deformation-potential coupling mechanism, we
found that the radial mode (1,0,0) gives the dominant contri-
bution to the low-frequency Raman signal, as observed ex-
perimentally for some semiconductor QDs.!!#86270 The
weaker Raman activity of the quadrupolar mode (1,2,0) is
due to the smaller volume change associated with this type
of vibrations. However, the relative contribution of the radial
and quadrupolar modes strongly depends on the coupling
mechanism between the QD vibration modes and electronic
states, i.e., on the semiconductor or metallic nature of the
QD.68

APPENDIX: NORMALIZATION OF EIGENVIBRATIONAL
MODE

Starting from the Hamiltonian,

3N- 2 2
Im; Q
= {—’+—’,2] (A1)
=0 L2 2
The eigenstate |W) of Hf)v can be written as a tensorial
product of eigenstates |\I’n[) of harmonic oscillators, n; being

the number of quanta in vibration mode /,

(W(ng,ny == nay )= [V, )@ - @[V, ). (A2)
We have the well-known relations
h T
0,= 2—91(01 +a), (A3)
—
al|\l}nl> = \”nl|q,n[—l>v (A4)
aj|¥,)=\n+1|¥,.,), (A5)
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3N-1

H{)\/= E ﬁQ,(a;a,+%),
1=0

(A6)

where a;f and a, are, respectively, the creation and annihila-
tion operators of vibration mode /.
The displacement operator of nucleus i in direction a (/
=3i+a) reads
!
Y
u=-r—

W

(A7)

3N-1

—2 P[1,k]

(ak +ay). (A8)

In the following, we evaluate matrix elements of the form
(W, |u;o|W,) for a given atom i. This task becomes easy using

Eq. (A8) and the vibration eigenstates, |V, =|\I’n(q)>®‘“
®|‘1’nq
3N- l
3N-1
(W uf¥,)={ ¥ E P[1,k] ZQ ———(aj+a) |V
Wy
(A9)
3N-1
E P[1,k] Vnd+ 1| W4
Qk m 0
o |\an+1> " ® |\P"2N 1
3N-1
[ q
+ 2 P[1,k] ZQk l\nk \Png
W) ® W ) (A10)

This matrix element is different from zero in two cases.
|¥,) must read

|qu>:|ang>® |\I’nZ—E> ® |\I,n§/N_ > (All)

With e=—1, which corresponds to the creation of a quantum
vibration in the eigenmode k,

h  —
(W, |uio W) = P[1.K] Wn{+1.  (Al12)
KMy
with e=1, corresponding to the annihilation of such a quan-
tum,

(W, |u;o W) = PLK] V. (A13)

2kan
The mean value of n{ is given by the Bose distribution,

1

s (A14)

ni=

where kg is the Boltzmann constant and 7T the temperature.
Moreover, normalization of the vibration eigenmodes is
performed using the condition P'’P=I so that
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3N-1

> Plk,']P[k,(]= 6.
k=0

(A15)

From Eq. (A7), ui:P[k,l]/ \Wk is the displacement of atom
i in the vibration eigenmode [/ along the direction a with k
=3i+a. Thus, in a classical approach, as for the Lamb
theory, Eq. (A15) becomes

PHYSICAL REVIEW B 76, 205425 (2007)

3N-1
> Nyl V/m_kui =y (A16)
k=0
The continuous formulation of this equation reads
| oo @ar= o (a17)

where p(7) is the mass density.
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