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Unidimensional model of adatom diffusion on a substrate submitted to a standing acoustic wave. II.
Solutions of the adatom motion equation
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The adatom dynamic equation, a Langevin-type equation is analyzed and solved using some nonlinear analytical
and numerical tools. We noticeably show that the effect of the surface acoustic wave is to induce an effective
potential that governs the diffusion of the adatom: the minima of this effective potential correspond to the
preferential sites in which the adatom spends more time. The strength of this effective potential is compared to
the disordering role of the thermal diffusion and to the crystalline potential induced by the substrate.
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I. INTRODUCTION

The self-organization of materials at the nanoscale is a
promising way to avoid the expensive lithography stage in
the conception of the semiconductor devices. Common self-
assembling techniques rely on the Stranski-Krastanov growth
modes,1,2 buried dislocations networks,3,4 or nanopatterned
substrates.5–8 An alternative approach to self-assemble mate-
rials at the nanoscale, the dynamic substrate structuring effect
has been recently proposed.9 In this approach, a standing
acoustic wave (StAW) governs the diffusion of the adatoms
on a substrate. In the first paper of this series,10 we have
established an unidimensional model of an adatom diffusing
on a substrate submitted to a StAW and derived the adatom
motion equation, a generalized Langevin equation:

m
d2x

dt2
+

∫ t

t0

γ [x(t),x(t ′),t − t ′]
dx

dt ′
(t ′)dt ′

= −d�eff

dx
(x) + ξ (t) + FSAW(x,t). (1)

The first left-hand side (lhs) term of Eq. (1) is the usual inertial
term. The second lhs term is a retarded friction force with
memory kernel γ [x(t),x(t ′),t − t ′] where t0 corresponds to
the time when the StAW production mechanism is switched
on: since γ [x(t),x(t ′),t − t ′] is a decaying function of |t − t ′|,
we can fix t0 at −∞ in the integral without loss of generality.
The first right-hand side (rhs) term is an effective interatomic
(substrate-adatom) periodic potential force derived from the
effective potential �eff(x), the second rhs term ξ (t) is a
stochastic force and the last one FSAW(x,t) is an effective
force induced by the StAW.10

The goal of this paper is to study the solutions of Eq. (1)
and to evidence the structuring role of the StAW on the adatom
diffusion, through the effective FSAW(x,t) force. In Ref. 10,
we showed that FSAW(x,t) reads FSAW cos(kx + ϕ) cos(ωt)
with k and ω being the wave vector and angular frequency of
the StAW. However, due to the precise nature of the adatom-
substrate interactions, FSAW(x,t) experiences also some varia-
tion at the substrate lattice parameter scale: the proportionality
factor FSAW and the phase factor ϕ vary as a function of
the exact position of the adatom in between two successive
atomic substrate potential wells. Because we focus here on
the structuring role of the StAW, we will only consider its

large scale variation, i.e., FSAW(x,t) = FSAW sin(kx) cos(ωt)
with a constant FSAW value and a constant phase factor that we
fix at −π/2 for convenience, eluding thus the possibility for
this force to vary on the substrate lattice parameter scale; such
dependence essentially affects the dynamics of the adatom and
weakly the structuring effects of the StAW.9 The detailed study
of the dynamics of the adatom will be reported elsewhere.

Concerning the stochastic force ξ (t) and the memory kernel
γ (x,x ′,t − t ′), which are related by the fluctuation-dissipation
theorem:10,11

〈ξ (t)ξ (t + τ )〉 = kBT γ [x(t),x(t + τ ),τ ], (2)

with kB being the Boltzmann constant and T the temperature,
their properties are very interaction-potential model dependent
and thus cannot be studied on a general ground. Though
we have established their analytical expressions for a given
adatom-substrate interaction potential in the preceding paper
[see Eq. (47) in Ref. 10], we will here use the more standard and
general model of a centered Gaussian noise for the stochastic
force, with correlation time τc.12–14

(1) The stochastic force is then fully characterized by its
zero mean value and autocorrelation function:

〈ξ (t)〉 = 0, (3a)

〈ξ (t)ξ (t + τ )〉 = D
e−|τ |/τc

τc

, (3b)

(2) and the memory kernel is given by [see Eq. (2)]

γ [x(t),x(t + τ ),τ ] = γ

τc

e
−|τ |
τc , (4)

where D/m2 is the adatom diffusion coefficient in the velocity
space in the absence of the StAW and γ is the friction coef-
ficient, given by γ = kBT /D. Equation (3) relies on the high
number of atoms in the substrate and its thermalization by an
external macroscopic system in experimental conditions.10,12

In this model, the correlation time τc is of the order of the
inverse of the Debye frequency of the substrate. The meaning
of the friction coefficient appears clearly in the limit of
vanishing correlation time

〈ξ (t)ξ (t + τ )〉 τc→0−−−→ 2Dδ(τ ), (5a)
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where δ is the Dirac distribution, and thus∫ t

−∞
γ [x(t),x(t ′),t − t ′]

dx

dt ′
(t ′)dt ′

τc→0−−−→ γ
dx

dt
(t), (5b)

i.e., the usual friction force is proportional to the speed. In this
limit, m/γ is the relaxation time τR of the adatom dynamics
in the absence of rhs in Eq. (1).

Equation (1) involves two different length scales: the StAW
wavelength λ = 2π/k and the periodicity a of the crystalline
potential, and three different time scales: the correlation time
τc, the StAW period T = 2π/ω, and the relaxation time τR of
the adatom dynamics. In the following analytical calculations,
we assume that all these scales are separable and have the
following properties:

a � λ, (6a)

τc � T � τR. (6b)

Equation (6a) derives from the fact that we consider StAW
wavelengths varying from few to hundreds of nanometers
compared to the substrate lattice parameter of the order of
10−1 nm. Equation (6b) is motivated by our molecular dynamic
(MD) simulations of adatom diffusion on a substrate submitted
to a nanometer wavelength StAW.9

The effective crystalline potential (�eff) will be modelled
by its fundamental Fourier component:

�eff(x) = −aϕ0

2π
cos(2πx/a), (7)

where ϕ0 is the amplitude of the corresponding force. Because
of the difference of length scales [see Eq. (6a)], we assume for
simplicity that the wavelength of the StAW force is an integer
multiple of the lattice parameter λ = na,

�eff(x) = −ϕ0

nk
cos(nkx). (8)

Within the presented model, Eq. (1) now reads

m
d2x

dt2
+ γ

τc

∫ t

−∞
e

−|t−t ′ |
τc

dx

dt ′
(t ′)dt ′

= −ϕ0 sin(nkx) + ξ (t) + FSAW sin(kx) cos(ωt), (9)

where ξ is the Gaussian noise defined by Eq. (3).
In a reduced dimensionless formulation, Eq. (9) reads

¨̃x + γ̃

τ̃c

∫ t̃

−∞
e

−|t̃−t̃ ′ |
τ̃c ˙̃xdt̃ ′

= −ϕ̃0 sin(nx̃) + ξ̃ (t̃) + F̃ sin(x̃) cos(t̃), (10)

with x̃ = kx, t̃ = ωt , γ̃ = γ /(mω), τ̃c = ωτc, ϕ̃0 = k/mω2ϕ0,
ξ̃ (t̃) = kξ (t)/(mω2), and F̃ = kFSAW/(mω2) and where ˙̃x and
¨̃x are the first and second derivatives of x̃ relative to t̃ ,
respectively.

Getting an explicit expression of the general solution of the
nonlinear stochastic integro-differential equation (9) or (10)
is unreachable at least for us and, anyways is not our goal.
As stated before, what we are interested in is to evidence the
conditions for the appearance of a structuring effect on the
adatom diffusion due to the effective StAW force and how the
other forces can affect it.

In Sec. II, we evidence the structuring effect of the StAW
force, by considering Eq. (10) in the long time (t � τc) and

length scales (x � a) limit without thermal fluctuations. In
this limit, the periodic potential and the stochastic forces can
be neglected and the retarded effects in the friction force too
(limit τc → 0). Eq. (10) reduces then to

¨̃x + γ̃ ˙̃x = F̃ sin(x̃) cos(t̃). (11)

The rigorous derivation of Eq. (11) from Eq. (10) is out
of scope of this paper: the relevance of Eq. (11) will be
evidenced by comparing its solutions to the one of Eq. (10)
in Secs. III, IV, V, and VI. Since Eq. (11) is nonlinear, we
apply in Sec. II some standard tools of the nonlinear physics
to characterize its solutions. First, using the multiple time-scale
analysis,15 we will evidence the existence of an effective
potential Ueff governing the diffusion in the longtime-scale
limit. The general solutions will then be studied using the
fixed points stability analysis. Then, it will be numerically
integrated and its solutions will be analyzed with the use of the
Poincaré sections of the phase diagram and the calculation of
their Lyapunov exponents. The stochastic force ξ (t) will then
be reintroduced in Sec. III in the same τc → 0 limit. It will
be shown that it mainly induces some fluctuations around the
solutions of Eq. (11). In Sec. IV, the retarded effects (τc 	= 0)
will be added, whereas the effects of the substrate effective
crystalline potential will be reintroduced in Sec. V in the
absence of retarded effects (limit τc → 0). In all the sections
from III to V, the structuring effect of the StAW force and
its sensitivity to the other forces will be evidenced through
the study of the position probability density of the adatom.
Finally, in Sec. VI, the relevance of the analysis of Sec. II on
the solutions of the complete equation [see Eq. (10)] will be
demonstrated.

II. MAIN EFFECTS OF THE STANDING ACOUSTIC WAVE
ON ADATOM DIFFUSION

We study in this section the nonlinear equation Eq. (11).
Note that this equation is invariant under a simultaneous
space and time translation: x̃ → x̃ + π and t̃ → t̃ + π . As a
consequence, all the results concerning the structuring effects
will be invariant under a space translation x̃ → x̃ + π .

A. Multiple time-scale analysis

Equation (11) is a nonlinear deterministic equation that
implies two different typical time scales: the dimensionless
relaxation time τ̃R = ωτR (depending on γ̃ ) of the adatom
dynamics and the period of the StAW force. To manage
these time scales, this equation is first analyzed using the
multiple scale method.15 This method, due to the extra
degrees of freedom it introduces, allows to remove the secular
divergences that can arise in a standard perturbation approach.
Note that Eq. (11) without friction has already been studied16,17

in a different framework.
We consider the limit ε = 1/ω → 0 (keeping constant cs =

ω/k, the sound speed in the substrate). Eq. (11) reads then

¨̃x + εγ ˙̃x = εF sin(x̃) cos(t̃), (12)

where γ = γ /m and F = FSAW/(mcs) are order 0 quantities
[O(ε0)]. We seek an approximate solution of Eq. (12) using
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the following expansion:

x̃(t̃ ,ε) = x̃0(t̃0,t̃1) + εx̃1(t̃0,t̃1)

+ε2x̃2(t̃0,t̃1) + O(ε3), (13)

involving the two time scales: t̃0 = t̃ and t̃1 = εt̃ . Substituting
Eq. (13) into Eq. (12) and identifying terms of the same order
in ε, we get the following equations:

D2
0 x̃0 = 0, (14a)

D2
0 x̃1 = −2D0D1x̃0 − γD0x̃0 + F cos(t̃0) sin(x̃0), (14b)

D2
0 x̃2 = −2D0D1x̃1 − D2

1 x̃0 − γ (D0x̃1 + D1x̃0)

+F x̃1 cos(t̃0) cos(x̃0), (14c)

where the operator Dn designs ∂/∂t̃n with n ∈ {0,1}. The
solution of Eq. (14a) reads

x̃0 = A(t̃1)t̃0 + B(t̃1). (15)

The first term of Eq. (15), a secular term that diverges with t̃0,
is removed by setting A(t̃1) = 0, leading to

x̃0 = x̃0(t̃1). (16)

Substituting Eq. (16) into Eq. (14b), the particular solution
x̃1 reads

x̃1(t̃0,t̃1) = −F cos(t̃0) sin(x̃0). (17)

Using these expressions of x̃0 [see Eq. (16)] and x̃1 see Eq. (17)]
in Eq. (14c), we write the solubility condition of this equation
by the elimination of the secular term as

D2
1 x̃0 + γD1x̃0 = −F 2

2
cos(x̃0) sin(x̃0), (18)

a differential equation governing the solution x̃0 on the time
scale t̃1. To give a physical meaning to Eq. (18), we note that
using Eqs. (16) and (17) in Eq. (13), the solution of Eq. (11)
writes to O(ε1) order:

x̃(t̃) = x̃0(t̃1) − F̃ cos(t̃0) sin[x̃0(t̃1)]. (19)

Therefore X(t̃1) the average value of x̃(t̃) over a StAW period,
writes to O(ε1) order:

X(t̃1) = 〈x̃(t̃)〉 = 1

2π

∫ t̃0+2π

t̃0

x̃(t̃)dt̃ ≈ x̃0(t̃1). (20)

Substituting x̃0(t̃1) by X(t̃1) in Eq. (18) and going back to
the t̃ variable, we obtain the longtime evolution equation of
X(t̃) = 〈x̃(t̃)〉, the mean value of x̃ over a StAW period:

d2X(t̃)

dt̃2
+ γ̃

dX(t̃)

dt̃
= − F̃ 2

4
sin[2X(t̃)]. (21)

Note that the scheme provided by Landau and Lifshiftz18 that
develops the variable x̃(t̃) in Eq. (11) as a sum of a slowly
varying function X(t̃) and a quickly varying function ζ (t̃)
yields a similar result.9

The multiple scale method has allowed us to transform
the nonautonomous Eq. (11) into an autonomous equation
[see Eq. (21)] on a longer time scale. This equation describes
the motion of the adatom on a mesoscopic time scale, long
compared to the period of the StAW, but small compared to

the relaxation time τ̃R of the adatom dynamics. The StAW
force acting at the mesoscopic time scale derives from the
effective potential Ueff :

Ueff(X) = F̃ 2

4
sin2(X). (22)

This potential is periodic with period π and minima at X =
0[π ]. Whatever the initial conditions, the longtime evolution
described by Eq. (21) will be a damped evolution toward one
of the minima of Ueff . Within the described approximation
[see Eq. (21)], the StAW leads then to a self-organization of
the adatom diffusion into a periodic array with period half
the period of the StAW. In the following, Ueff will appear to
be an essential tool to interpret the adatom trajectories and
the structuring effect of the StAW. Note that the (stable) fixed
points of Eq. (21), which are the minima of Ueff , are also those
of Eq. (11).

These results are approximated results, we must now come
back to Eq. (11) to test their relevance in the general case.
We will start with the study of the stability of the fixed points
[(x̃, ˙̃x) = (0[π ],0)] of Eq. (11), which, as we will see now, can
differ from that of Eq. (21) for certain values of the parameters
of the equation.

B. Fixed points stability

As already mentioned, Eq. (11) is invariant under simple
spatial and time translations so that all the fixed points (x̃, ˙̃x) =
(0[π ],0) are equivalent. We hence reduce our stability analysis
to one fixed point: (x̃, ˙̃x) = (0,0). The linearized version of
Eq. (11) around this fixed point reads

V̇ = A(t̃)V (t̃) (23)

with V = (
x̃
˙̃x

) and A(t̃) = ( 0 1
F̃ cos(t̃) −γ̃ ).

We define Rt̃
t̃0

, the propagator of Eq. (23), as

V (t̃0)
Rt̃

t̃0−→ V (t̃). (24)

Since A(t̃) = A(t̃ + 2π ) in Eq. (23), the Floquet theory
provides the stability of the fixed point (x̃, ˙̃x) = (0,0) of
Eq. (11) from the eigenvalues of R2π

0 : the fixed point is stable
if all the eigenvalues of R2π

0 are inside the unit circle of the
complex plane.

The propagator R2π
0 is calculated by numerically integrating

Eq. (23) using a fourth-order Runge-Kutta method and is then
diagonalized. Figure 1 reports the stability diagram of the fixed
point (x̃, ˙̃x) = (0,0) in the (γ̃ ,F̃ ) parameter plane (PP). Figure 1
reveals the existence of unstable domains that questions the
validity of the self-organization effect evidenced for any (γ̃ ,F̃ )
parameters in the preceding section. This is not contradictory
since the Floquet analysis is exact concerning the fixed points
stability, while the approximated multiple scale analysis relies
on the smallness of the amplitude of the fast variations (StAW
period time scale) compared to the slow variations (τ̃R time
scale) of x̃. A condition, which will be fulfilled as far as
the strength of the friction force (γ̃ ), remains large enough
compared to the strength of the effective StAW force (F̃ ),
which explains the global separation between the stability
(upper left triangle) domain (SD) and the instability (lower
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FIG. 1. (Color online) Stability (blank) (SD) and instability
(dashed) (ID) domains of the fixed point (0,0) of Eq. (11) in the (γ̃ ,F̃ )
parameter plane (PP). Red crosses design the couples of parameters
chosen in the numerical studies of Secs. II, III, and IV.

right triangle) domain (ID) in the PP. In addition, in absence of
friction γ̃ = 0, Eq. (23) is equivalent to a Mathieu equation for
a parametric oscillator with a null eigenfrequency. The stability
diagram of the Mathieu equation can be, for instance, found in
Fig. 2 of Ref. 19: it evidences some unstable solution regions,
corresponding to the parametric resonances, separated by very
tiny stable regions for an oscillator with a null eigenfrequency.
The large separated unstable subdomains (tongue) in Fig. 1
hence correspond to the parametric resonances that disappear
when increasing the dissipation γ̃ .

C. Numerical study

In order to check the self-organization ability of the
effective StAW force in the ID of the PP (see Fig. 1), we
need to turn to a precise examination of the trajectories. An
analytical resolution of Eq. (11) is out of scope, so we will solve
it numerically using the forth-order Runge-Kutta method for
different values of the parameters (γ̃ ,F̃ ). We will also look at
the trajectories for parameters in the SD to give a complete
scope of the different exact behaviors. In order to enlighten
some specificities of the trajectories, the resolution will be
performed for different initial conditions (IC), [x̃(0), ˙̃x(0)].
From our analysis of the stability diagram in the preceding
section, we expect to observe specific behaviors associated to
increasing values of F̃ at constant γ̃ , going from one stability
domain to the next one through the midway instability domain.
This is what we observed in our rather extended exploration
of the PP and IC spaces. From this exploration, we identified
four categories of trajectories: one corresponding to the SD
and the three others to the ID, one in its core and the two
others in the vicinity of its frontiers with its two neighboring
SDs. We did not examine the very peculiar case γ̃ = 0, which
corresponds to undamped trajectories, since it is not relevant
for the adatom diffusion on a substrate, and since it has been
studied previously.16 Of course, we cannot absolutely exclude
the possibility to have missed some specific behaviors, even

if we consider it as highly improbable. In all the rest of
the manuscript, we will focus on the solutions for the 2.0
constant γ̃ value, since it provides a representative sample of
the behaviors we have exhibited. The results are presented for
increasing values of F̃ (1.5, 3.15, 4.5, and 4.96) through the
first instability subdomain (red crosses in Fig. 1). In each case,
the trajectory is related to the effective potential Ueff(X) [blue
solid line in Fig. 2 and Eq. (22)] in order to evidence any
self-organization behavior.

1. Converging trajectories

The trajectories have typically an oscillating behavior
whose amplitude and offset are decreasing. They can be
somewhat different at the very beginning, depending on the
sign of the x̃(0) ˙̃x(0) product but they have the same character
at a longer time scale. Figure 2(a) reports the solution for γ̃ = 2
and F̃ = 1.5 for initial conditions (1.0,0.0) corresponding to
an initial position in the Ueff(X) potential valley associated to
its 0.0 minimum. We choose an initial position (1.0) rather
away from the minimum of Ueff(X) to best evidence the
amplitude and offset decreases. The initial speed has been
fixed to zero in order to only present the characteristic time
behavior.

The trajectories converge toward the fixed point (0,0). De-
pending on the initial conditions, the trajectory can eventually
escape from the 0.0 minimum to an adjacent minima. In that
case, the trajectory will converge to the corresponding Ueff(X)
minima (fixed point). The several time scales mentioned in
Sec. II A are clearly visible in Fig. 2(a): fast oscillations at a
2π period (StAW period) whose amplitude slowly decays on
the τ̃R time scale. The period of the oscillations can be one of
the harmonics of the StAW period. For example, in the vicinity
of the stability/instability frontier (γ̃ ,F̃ ) = (2.0,3.028), we
observe the second harmonic period (4π ). It appears then
that, in the SD, the solutions of Eq. (11) can be adequately
estimated using a multiple time-scale analysis, the longtime
behavior being well described by Eq. (21).

2. Periodic trajectories

In the ID, in the vicinity of the first frontier between the
SD and the ID, the unstable character of the fixed point
results in an amplification of the oscillations [see Fig. 2(b)].
This amplification occurs up to an upper limit fixed by the
nonlinearities of the sinus in Eq. (11). At this time, the
trajectory becomes periodic, revealing the existence of a limit
cycle, the attractor of the system in the phase space. The IC
of the presented trajectory [x̃(0), ˙̃x(0)] = (0.1,0.0) in Fig. 2(b)
for γ̃ = 2 and F̃ = 3.15 correspond to a position very close
to the unstable fixed point to evidence the amplification of
the fast oscillations (transient regime) leading to the periodic
trajectory. The period of oscillation is 4π , i.e., twice the
excitation period. Like in the converging trajectories, this
period depends on the peculiar choice of the parameters (see
Sec. II D).

The trajectory of Fig. 2(b) oscillates in its initial effective
potential basin. However, increasing F̃ , results in an increase
of the upper limit. This limit may overcome the maxima
of Ueff(X) so that the trajectory may extend on the two
neighboring effective potential basins; however, the average

155421-4



UNIDIMENSIONAL . . . . II. SOLUTIONS OF THE . . . PHYSICAL REVIEW B 85, 155421 (2012)

(b)(a)

0 50 100
t
~

-0.5

0

0.5

1

1.5
x

Effective potential (arb. unit)

γ ∼ = 2.0 ; F~ = 1.5 ; I.C.(1.0,0.0)
U

eff

0 250 500
t
~

-1.5

-1

-0.5

0

0.5

1

1.5

x

Effective potential (arb. unit)

γ ∼ = 2.0 ; F~ = 3.15 ; I.C.(0.1,0.0)
U

eff

(d)(c)

0 5000
t
~

-100

0

100

x

Effective potential (arb. unit)

γ ∼  = 2.0; F~=4.5; I.C.(0.1,0.0) 
γ ∼  = 2.0; F~=4.5; I.C.(0.12,0.0)
U

eff

0 20 40 60 80
t
~

0

20

40
x

Effective potential (arb. unit)

γ ∼  = 2.0; F~=4.96; I.C.(0.1,0.0)
U

eff

FIG. 2. (Color online) Black and red curves: x̃(t̃) solutions of Eq. (11) for γ̃ = 2.0. Stability domain (SD): (a) converging trajectories
(F̃ = 1.5). Instability domain (ID): (b) periodic trajectories (F̃ = 3.15), (c) chaotic trajectories (F̃ = 4.5), and (d) unbounded trajectories
(F̃ = 4.96). Initial conditions are reported in the legend. Blue curves: Ueff (X), the effective potential (abscissa) in arbitrary units vs position X

(ordinate).

position of the adatom always belong to the same potential
basin. Ueff(X), if relevant to characterize the trajectory of
the adatom, does not capture all the information contained
in the phase space diagram. With this kind of trajectories the
self-organization character of the effective StAW force is not
apparent but will be demonstrated in Sec. III studying the
distribution of the adatom x position.

3. Chaotic trajectories

In order to evidence the chaotic character of some trajec-
tories in the core of the ID region (F̃ = 4.5), we report on
Fig. 2(c) the solutions of Eq. (11) for two sets of very closed
ICs (0.10,0.0) and (0.12,0.0). Both trajectories visit different
effective potential basins following an apparently erratic
motion. The two solutions, diverge quickly from each other,
despite their very close ICs, suggesting the chaotic character
of these trajectories. To examine this chaotic behavior, we
calculate the Lyapunov coefficients (λi) of the autonomous
system associated to Eq. (11). For the first trajectory, using

the algorithm provided by Wolf et al.,20 the highest Lyapunov
coefficient λL is found to be positive (0.278) (binary base),
an unambiguous evidence of the chaotic character of this
solution.

The transition to the chaotic behavior will be discussed in
a separate section (see Sec. II D). At first sight, it seems that
the self-organization character is lost, but as we will see later
(see Sec. III) studying the position probability density of the
adatom, it is actually preserved.

4. Unbounded trajectories

We look now, in the ID domain, at a characteristic trajectory
in the vicinity of the second frontier between the ID and the
SD (F̃ = 4.96). The IC of the trajectory reported in Fig. 2(d)
are the same as those in the two preceding cases, (0.1,0.0).
After a transient period where the particle stays in its original
potential well, it leaves it, without being captured by any other
potential well: the trajectory is unbounded. As one can see,
from this point the trajectory is roughly linear and thus does not
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present any visible chaotic character. This is confirmed by the
calculation of its Lyapunov exponents that are all negative (or
null). After the transient period, the trajectory is monotonously
increasing with a staircase character. Changing the IC can lead
to a monotonously decreasing trajectory with a symmetric
staircase character. These trajectories are analogous to the
rotations of a pendulum about its pivot in the clockwise or
counterclockwise directions and have been already evidenced
in the phase space [x̃(0), ˙̃x(0)] in the absence of dissipation
γ̃ = 0.16

The final remark of the preceding section still applies here:
contrary to the appearances, the self-organization character is
preserved. It infers from the staircase character of the trajectory
which corresponds to longer residence times in the potential
valleys than the transition times between valleys. The self-
organization character will be evidenced for all the types of
trajectories in Sec. III, where the probability distribution will
be studied in the presence of the fluctuating force (vanishing
fluctuating force case).

D. Transition to chaos

We will now characterize the domains of existence, in the
PP plane, of the four observed types of trajectories, through
the study of the Poincaré section ( ˙̃x = 0) of the solutions of
Eq. (11) at times larger than the transient initial period. As in
the preceding section, we explore the PP at the constant γ̃ = 2
value. We increase F̃ starting with a value F̃ = 1.5 in the first
SD up to F̃ = 6.84 in the heart of the second ID, going through
the first ID in between (see Fig. 1). The critical values of F̃

separating different behaviors have been calculated using the
shooting and continuation methods21 and are given here with
a precision of 0.001. Note that these F̃ critical values depend
on the γ̃ value. The calculations have been performed for a
wide range of ICs. Whatever the parameters, we found at most
two types of asymptotic trajectories presented in Fig. 3(a)
(black and red dots) depending on the ICs. The presented
points correspond to (0.1,0.0) (black dots) and (−0.1,0.0)
(red dots) ICs. λL, the greatest non-null Lyapunov coefficient
(binary base) of the autonomous system associated to Eq. (11),
has been calculated also to characterize the chaotic or not
character of the trajectories.20 Since the results are independent
of the ICs, we present in Fig. 3(b) its evolution with F̃ for the
(0.1,0.0) IC only. From Fig. 3, we see that in the first SD, i.e.,
F̃ < F̃1, with F̃1 = 3.028 the first SD/ID limit, the asymptotic
solution of Eq. (11) is the stable fixed point (0,0) whatever the
ICs (see Sec. II C1). This result is coherent with the values of
λL < 0.

At F̃1, λL goes to 0 for the first time and we enter the
first ID, the system undergoes a Hopf bifurcation toward an
unique limit cycle (with twice the StAW period), the attractor
of the flow (identical black and red points) in agreement
with the results of Sec. II C2. More precisely, due to the
translation invariance of Eq. (11), there is actually an infinite
number of limit cycles, attractors of the system, one per fixed
point (0[π ],0). This domain of periodic asymptotic trajectories
extends from F̃1 to F̃2 = 3.654. Beyond, for F̃ > F̃2, λL

becomes positive and thus the trajectories chaotic. The first
periodic-chaotic transition is thus at F̃ = F̃2.

FIG. 3. (Color online) (a) Poincaré section of the phase space
omitting transient regime as a function of F̃ with γ̃ = 2.0 from
trajectories calculated by numerical resolution of Eq. (11) with initial
conditions (0.1,0.0) (black) and (−0.1,0.0) (red). Blue curve: Ueff (X),
the effective potential (abscissa) in arbitrary units versus position X

(ordinate), (b) λL the greatest non-null Lyapunov exponent (binary
base) of Eq. (11) as a function of F̃ for initial conditions (0.1,0.0).
The solid horizontal line (λL = 0) is a guide to the eyes.

In this periodic domain, F̃1 < F̃ < F̃2 at F̃ = 3.552, λL

goes to zero and the limit cycle splits into two limit cycles
(separation of the black and red points) without any period
change. The system has then two attractors per fixed point.
This doubling of the number of attractors, precedes for
each attractor a cascade of period doubling bifurcations at
increasingly close values of F̃ , each of them being associated
to the cancellation of λL. We have been able to observe
four period doubling bifurcations(at 3.632,3.650,3.653,3.654),
though we did not try to optimize this number. Each period
doubling bifurcation corresponds to the apparition of the
corresponding peak in the Fourier spectrum. The transition
to chaos proceeds when the spectrum becomes continuous
at F̃2.

Between F̃2 and F̃3 = 4.890, there is an alternation between
large domains of chaotic trajectories and many very small
domains of periodic or unbounded asymptotic solutions (with
λL < 0). The chaotic trajectories are characterized by positive
values of λL and Poincaré sections containing an infinite
number of points in the limit of an infinite trajectory. In the
very small domains where λL becomes negative, the solutions
are either asymptotically periodic with, in the Poincaré section,
a reduced number of points, or unbounded with an absence of
points in the x interval chosen for Fig. 3(a).

At F̃3 = 4.890, λL goes again to zero and there is a
transition toward unbounded asymptotic trajectories [λL < 0
and absence of points in the x interval of the Poincaré section
Fig. 3(a)]. This unbounded domain extends up to the end
of the first ID at F̃ = F̃4 = 5.090 where again λL = 0. For
F̃4 < F̃ < F̃5, where F̃5 = 6.183 corresponds to the second
SD/ID limit, the asymptotic solution of Eq. (11) is again the

155421-6



UNIDIMENSIONAL . . . . II. SOLUTIONS OF THE . . . PHYSICAL REVIEW B 85, 155421 (2012)

stable fixed point (0,0) with λL < 0, whatever the ICs (see
Sec. II C1). At F̃5, we enter the second ID and we observe
a behavior very similar to the one in the first ID. The main
difference is that the first periodic domain starts directly with
two limit cycles, then there is also a cascade of period doubling
bifurcation, the first one at F̃ = 6.522, leading also to a region
of alternation of wide chaotic domains and small periodic or
unbounded domains.

The system described by Eq. (11) is very rich and
complex. The apparition of chaotic solutions is actually not
surprising: imposing a standing acoustic wave involves the
interaction of two harmonics in a parametric-like excitation.
Equation (11) without dissipation has been studied in order
to investigate regimes where resonances induced by both
harmonics interact.16 The kicked rotor22 is also very similar to
our system excepted that an infinity of harmonics are involved
in the excitation, so that their resonances can interact leading
to chaotic solutions. Finally, let’s mention the work of Van
Dooren21 who studied the dynamics of a pendulum with a
forced sinusoidal horizontal support motion; in the absence of
gravity, this system reduces to our undamped system (γ = 0).

From this numerical study, it appears that the trajectory
of an adatom on a substrate submitted to a StAW can
be of four different types, depending on the parameters
(γ̃ ,F̃ ). While increasing values of F̃ at constant γ̃ , the
domains corresponding to the different kinds of trajectories
are successively (i) converging trajectories in the SD domains,
followed in the ID domains by (ii) a periodic domain, then
(iii) an alternation of mainly chaotic solutions together with
small periodic or unbounded domains and ends up with
(iv) an unbounded domain, and so on when entering the next
SD. While the structuring effect of the StAW is obvious in the
case of converging trajectories and to a less extend periodic
trajectories, since it drives the particle into given regions in the
configuration space, it is less obvious for the other cases, in
particular, for the chaotic domains.

III. STOCHASTIC FORCES

In this section, we reintroduce the Gaussian stochastic force
ξ (t) in Eq. (11) in the τc → 0 limit:

¨̃x(t̃) + γ̃ ˙̃x(t̃) = ξ̃ (t̃) + F̃ cos(t̃) sin(x̃), (25)

with

〈ξ̃ (t̃)〉 = 0, (26a)

〈ξ̃ (t̃)ξ̃ (t̃ + τ̃ )〉 = 2D̃δ(τ̃ ), (26b)

where D̃ = D/(ωm2c2
s ) [see Eqs. (3) and (5)]. Note that D̃

and γ̃ are not independent due to the fluctuation-dissipation
theorem (2):

D̃

γ̃
= kBT

mc2
s

. (27)

We will use in this section the same 2.0 fixed value of γ̃ and the
same four values of F̃ as in the previous section, corresponding
to the four exhibited types of solutions. Three values of D̃

(0.0001, 0.01, and 0.1), or equivalently of temperatures for
given substrate (cs) and adatom (m), will be investigated,

corresponding to the quasiabsence of the stochastic [see Sec. II,
Eq. (11)], a medium, and strong stochastic forces, respectively.

Due to the stochastic character of Eq. (25), we adopt here
a statistical point of view. It appears, as demonstrated in this
section, that on a longtime scale compared to the relaxation
time τ̃R , the memory of the IC is lost and the system is in
a quasisteady state: P (x̃), the distribution of the adatom x

position is mainly time-independent (rigorously, it involves
a tiny periodic contribution at the StAW frequency). On a
timescale larger than the StAW period, the structuring effect
of the StAW will be revealed through the correlation between
the x̃ variations of P (x̃) and those of the periodic effective
potential Ueff . Physically, P (x̃) will point out the preferential
sites where the adatom spends most of its time.

Assuming the ergodicity of the system, P (x̃) can be
obtained from a single long trajectory of one particle (after
elimination of the initial transient period, with whatever IC)
or from a set of trajectories. In addition, due to the transla-
tional invariance x̃ → x̃ + π,t̃ → t̃ + π of Eq. (11), P (x̃) is
expected to be π periodic. We calculate P (x̃) from a number of
trajectories obtained for different ICs and realizations of ξ̃ (t̃):
100 trajectories of t̃ = 10 000 time units each. The ICs are
taken at random in the x̃ = 0 effective potential valley with
˙̃x = 0. The points of the trajectory outside the initial valley
are translated back to the x̃ = 0 valley coherently with the
translational invariance of Eq. (11). P (x̃) is then estimated
from the histogram of the adatom position of these trajectories
and the following normalization condition:

∫ π/2

−π/2
P (x̃)dx̃ = 1. (28)

The results are reported in Fig. 4 over half the StAW
wavelength, i.e., a period of Ueff together with the effective
potential Ueff .

1. Converging trajectories

F̃ = 1.5, Fig. 4(a). At a very low diffusion coefficient
value (D̃ = 0.0001), P (x̃) is strongly peaked at x̃ = 0: in the
quasiabsence of fluctuating force, the trajectory still converges
to the minimum of the effective potential. The tiny stochastic
force induces small fluctuations of the position in the vicinity
of the minimum. This fluctuations are not strong enough to
induce a transition to an adjacent valley (intervalley transition)
on the simulation time scale [P (±π/2) = 0 at the maxima
of Ueff]. At D̃ = 0.01, the width of the peak centered on
the fixed point of Eq. (11) has not sufficiently increased to
induce a significant intervalley transition, whereas it does at
D̃ = 0.1 [P (±π/2) � 15%]: the adatom diffuses from a basin
of attraction to a neighboring one. The converging character
of the trajectory is lost. However, the self-organization is
preserved through the peaked character of P (x̃) centered on
the minima of Ueff .

2. Periodic trajectories

F̃ = 3.15, Fig. 4(b). Here, also at very low diffusion
coefficient D̃ = 0.0001, the periodic character of the trajectory
is roughly preserved with small fluctuations around the initial
periodic trajectory in the absence of ξ̃ and the particle visits a
wide region of a basin of attraction of the effective potential.
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FIG. 4. (Color online) Black, red, and green curves: histograms of P (x̃) for different values of the diffusion coefficient D̃: 0.0001, 0.01, and
0.1 respectively, with γ̃ = 2.0 and different F̃ values, i.e., types of trajectories as defined in Sec. II C: (a) converging (F̃ = 1.5), (b) periodic
(F̃ = 3.15), (c) chaotic (F̃ = 4.5), and (d) unbounded (F̃ = 4.96). Blue curve: Ueff (X), the effective potential in arbitrary units.

The peaks and features observed on the plot of P (x̃) for
D̃ = 0.0001 are due to the specific shape of the limit cycle
[or trajectory shown in Fig. 2(b)]. Increasing the diffusion
coefficient D̃ induces some fluctuations around this limit cycle.
They can even activate the crossing of the effective potential
barriers (on the simulation time scale), clearly evidenced for
D̃ = 0.1 by the significant value of P (π/2). Increasing the
diffusion coefficient smooths the structuring role of the StAW:
the stochastic fluctuations give rise to a wide Gaussian-like
distribution centered on the effective potential minimum and
whose width increases with the diffusion coefficient.

3. Chaotic trajectories

F̃ = 4.5, Fig. 4(c). In the quasiabsence of stochastic force
(D̃ = 0.0001), the chaotic character of the trajectory leads
to a P (x̃) distribution correlated to Ueff ; even if the adatom
is not trapped in a given potential valley [P (π/2) 	= 0 and
Fig. 2(c)], P (x̃) has a pronounced maxima at the minima

of Ueff . Increasing the diffusion coefficient yields the same
qualitative observations as in the previous periodic trajectory
case.

4. Unbounded trajectories

F̃ = 4.96, Fig. 4(d). At the very low D̃ = 0.0001 value,
from the staircase character of the trajectory presented in
Fig. 2(d), one expects a nonuniform P (x̃) with a marked
peak inside each potential well. A precise examination of
the trajectory in Fig. 2(d) reveals that the plateaux are at x̃

positions slightly larger than the center of the potential wells.
Such a trajectory contributes then to the x̃1 > 0 peak observed
on Fig. 4(d) (top). The second peak at the symmetric −x̃1

position results from mean trajectories toward x̃ < 0 positions.
The x̃1 > 0 noncentered position of the distribution associated
to trajectories toward increasing mean x̃ values results from the
definite direction x̃ > 0 or x̃ < 0 of the observed trajectories
[x̃ > 0 in Fig. 2(d)]. Increasing the diffusion coefficient results
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in an increased width of each peak, leading to a unique
central peak for D̃ = 0.1. As in the three preceding cases, the
structuring effect of the StAW is also evidenced in that case
whatever the strength of the stochastic force in the studied
range.

As a conclusion, we would like to emphasize that for all
the trajectories types, and as soon as the stochastic force is
significant, the distribution P (x̃) is a Gaussian-like distribution
centered on the effective potential minimum. Therefore the
StAW has a structuring effect on the diffusion of the particle:
it induces preferential sites in which the particle spends more
time. These sites precisely correspond to the minima of the
effective potential evidenced in Sec. II. The stochastic force
essentially counterbalances the structuring role of the StAW
by smoothing the distribution P (x̃).

IV. RETARDED EFFECTS

We have neglected the correlation time τc in Secs. II and
III. In surface diffusion problems, such an approximation is
valid for heavy adatoms,14 which is a rather uncommon case.
In this section, we investigate the effect of a significant value
of the correlation time τc compared to the StAW period. The
correlation time τc is involved in the friction term through the
memory kernel [see Eq. (4)] and in the autocorrelation function
of the stochastic force ξ (t̃) [see Eq. (3b)]. Reintroducing
the retarded effects, Eqs. (25), (26a), and (26b) are now
written as

¨̃x(t̃) + γ̃

τ̃c

∫ t̃

−∞
˙̃x(t̃ ′)e−(t̃−t̃ ′)/τ̃cdt̃ ′ = F̃ cos(t̃) sin(x̃) + ξ̃ (t̃),

(29)

〈ξ̃ (t̃)〉 = 0, (30a)

〈ξ̃ (t̃)ξ̃ (t̃ + τ̃ )〉 = D̃
e−|τ̃ |/τ̃c

τ̃c

, (30b)

with the same Eq. (27) between D̃ and γ̃ .
Let’s first estimate a physical range for the time τ̃c = ωτc.

On the one hand, in the case of the diffusion of an adatom,
1/τc is roughly of the order of the Debye frequency fD ,
corresponding to the maximum frequency of atomic vibrations
in the crystalline substrate, i.e., fD ≈ 1013 Hz for common
crystals, and consequently τc ≈ 0.1 ps. On the other hand,
as mentioned in the introduction, the StAW wavelengths of
interest vary from few to hundreds of nanometers, i.e., typically
from 5 nm to 1 μm. With typical sound speeds in solids around
3000 m s−1, the StAW angular frequency ω lies in the range
1.25 × 1010–2.5 × 1012 rad s−1. Consequently, τ̃c will be in
the range 0.002–0.40.

Three typical values of τ̃c, 0.001, 0.3, and 0.4, will be
used to investigate the effect of τc in the two extreme
cases: quasiabsence (D̃ = 0.0001) and significant (D̃ = 0.01)
fluctuations, two values of D̃ already used in the preceding
sections. Due to the separation of the different time scales, we
expect the solutions of Eq. (29) with a low τ̃c value (0.001)
to be very similar to solutions of Eq. (25). Only values of
τ̃c non-negligible compared to the StAW period are expected

0 200
t~
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1

2

x

Effective potential (arb. units)

U
eff

τ~
c
 = 0.001

τ~
c
 = 0.3

τ~
c
 = 0.4

FIG. 5. (Color online) Converging trajectories x̃(t̃) solutions of
Eq. (29), (γ̃ ,F̃ ) = (2.0,1.5), with a small diffusion coefficient (D =
0.0001) and initial conditions (x̃, ˙̃x) = (1.0,0.0), for three different
values of τ̃c: 0.001 (black), 0.3 (red), and 0.4 (green). Blue curve :
Ueff (X), the effective potential (abscissa) in arbitrary units vs position
X (ordinate).

to produce solutions of Eq. (29) significantly different from
those of Eq. (25). We reduce our study to the converging
trajectory case previously studied (γ̃ = 2,F̃ = 1.5), with the
same (1.0,0.0) IC as in Sec. II C1, since this type of trajectory
is the most favorable for self-organization and thus will be
usually preferred in any application.

Equation (29) is numerically solved using a Leap-frog
algorithm.23 ξ̃ (t̃) values satisfying Eqs. (30a) and (30b) are
generated with the algorithm of Ref. 24 while the integral of
the friction term including the memory kernel are calculated
using the algorithm given in Ref. 13.

The solutions for D̃ = 0.0001 are reported on Fig. 5. As
expected, when the fluctuations are negligible, whatever the
correlation time, the solutions of Eq. (11) are qualitatively
unchanged and thus τc has a negligible influence on the
structuring effect. The solutions are still oscillating functions
at the StAW time scale and they still converge to the fixed
point. The main effect of increasing values of τc is an increase
of the amplitude of the oscillations at all time scales, and
correlatively of the relaxation time τ̃R of the adatom dynamics.
Such behavior has already been mentioned and explained
in the literature: the velocity autocorrelation function for
the adatom shows both a ballistic and a diffusive regime,
the width, roughly τ̃R of the ballistic regime, is related
to τ̃c.13

At odds, when the stochastic force is large (D̃ = 0.01), the
possibility for the adatom to cross an effective potential barrier
on the simulation time scale increases with τ̃c: we report in
Fig. 6(a) the trajectories of the adatom as a function of time
for the three different mentioned values of τ̃c. Increasing τ̃c,
and hence the ballistic regime, gives more importance to the
very unlikely extreme values of ˜ξ (t) and thus results in a
higher effective diffusion coefficient (not shown). Figure 6(b)
reports the P (x̃) distributions: τ̃c slightly affects the histogram
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FIG. 6. (Color online) (a): converging trajectories x̃(t̃) solutions
of Eq. (29), (γ̃ ,F̃ ) = (2.0,1.5), with a diffusion coefficient D = 0.01
and initial conditions (x̃, ˙̃x) = (1.0,0.0), for three different values of
τ̃c: 0.001 (black), 0.3 (red), and 0.4 (green). Blue curve : Ueff (X),
the effective potential (abscissa) in arbitrary units versus position
X (ordinate). (b): Corresponding histograms of P (x̃) from 100
trajectories of 10 000 time units with initial conditions evenly
distributed between −π and π (same color code as in (a)).

P in the vicinity of the minimum of Ueff . The effect is more
pronounced on its wings: they increase significantly leading
to nonzero P values at the Ueff maxima for τ̃c = 0.3 and 0.4,
coherently with the possibility for the adatom to escape from its
original potential valley evidenced in Fig. 6(a). Nevertheless,
no matter the value of τ̃c, the shape of P (x̃) is still Gaussian-
like evidencing the structuring effect of the StAW. We can thus
conclude that if the retarded effects quantitatively modify the
trajectories, they weakly affect the structuring effect induced
by the StAW.

FIG. 7. Stability (blank) and instability (dashed) domains of the
fixed point (0,0) of Eq. (31) in the (γ̃ ,F̃ ) parameter plane (PP) for
increasing values of the effective crystalline force ϕ̃0. From top to
bottom : ϕ̃0 = 0.00 (same as Fig. 1), 0.05, 0.15, 0.25, and 0.35.

V. EFFECTIVE CRYSTALLINE POTENTIAL

In this section, we consider the additional effect of the
effective crystalline potential �eff(x̃) on the motion of the
adatom, in the same negligible correlation time limit (τc → 0).
Equation (10) then reads

¨̃x(t̃) + γ̃ ˙̃x(t̃) = −ϕ̃0 sin(nx̃) + F̃ cos(t̃) sin(x̃) + ξ̃ (t̃).

(31)

The calculations will be performed with n = 24, a value
comparable to the ones we used in our MD simulations.9

First, we study the modifications induced by �eff on the
fixed-point stability diagram described in Sec. II, Fig. 1, in
absence of stochastic forces. Note that in Eq. (31) both the
crystalline and StAW forces cancel for x̃ = 0. We could easily
imagine that a dephasing of �eff compared to the StAW will
shift the fixed points or yield to the absence of fixed points.
However, since the StAW wavelength is large compared to
the lattice parameter, we do not expect such a dephasing to
qualitatively modify the adatom trajectories, especially in the
presence of the stochastic force. Figure 7 reports, as in Fig. 1,
the stability diagram in the (γ̃ ,F̃ ) PP for increasing values of
ϕ̃0 = 0.0,0.05,0.15,0.25, and 0.35. The main effect of �eff

is to shift the instability domains toward higher F̃ values
at constant γ̃ . The effective crystalline potential has then a
stabilizing effect on the trajectories.

To investigate the structuring effect of the StAW, as in
the preceding section, we will study the effect of �eff in the
presence of the stochastic force only for one couple (γ̃ =
2,F̃ = 1.5), corresponding to converging trajectories in the
absence of crystalline potential. Here, we are mainly interested
on what happens when �eff is substantially higher than the
effective StAW potential Ueff and is thus potentially able to
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ries [(γ̃ ,F̃ ) = (2.0,1.5)] solutions of Eq. (31) (100 trajectories of
200 000 time units each), with D̃ = 0.1 and increasing values of ϕ̃0

from top to bottom: ϕ̃0 = 0.7,1.5,3,5.

challenge or to overcome the structuring effect of the StAW:
actually, the StAW force becomes then a second-order effect
compared to the crystalline potential. In order to induce an
efficient diffusion across, the effective crystalline potential
barrier on the simulation time scale, we will use the strongest
stochastic force (D̃ = 0.1) previously used.

Solving numerically Eq. (31), we calculate the histogram
P (x̃) from 100 trajectories of 200 000 time units each with dif-
ferent ICs. Figure 8 reports the distribution P (x̃) [normalized
following Eq. (28)] as a function of x̃ for increasing values
of ϕ̃0 = 0.7,1.5,3.0, and 5.0, starting at a lower value than
F̃ up to 3.3 times F̃ . Comparing to Fig. 6, we see that the
Gaussian like curves present now a structuration at the �eff

length scale. There are now two length scales: (1) a short
wavelength oscillation (length scale a) due to �eff with the
local maxima of P (x̃) at the minima of �eff and (2) a slow
variation of the amplitude of the local maxima corresponding
to the previous curves of Fig. 6 and thus to the StAW with
the maxima of P (x̃) at the minima of Ueff . Unexpectedly,
from Fig. 8, the structuring effect seems to increase with the
increasing of the effective crystalline potential. However, this
effect is essentially due to the normalization: fitting the set of
maxima of P (x̃) by a Gaussian curve leads to approximately
the same Gaussian width for all the values of ϕ̃0.

Hence the structuring effect is weakly affected by the
values (even for significant values) of ϕ̃0. Note the very
good qualitative agreement between the distribution P (x̃) in
Fig. 8 and the results reported in our molecular dynamics
simulations.9

VI. EFFECTIVE POTENTIAL AND PROBABILITY
DISTRIBUTION

To quantify the structuring effect of the StAW, we note that
the structuration can be characterized by an effective energy
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FIG. 9. (Color online) Effective energy difference �Eeff
SAW as a

function of ratio ϕ̃0/F̃ calculated from histograms P (x̃). Histogram
P (x̃) are calculated from 100 trajectories of 200 000 time units for
each values of ϕ̃0/F̃ by solving Eq. (31) with γ̃ = 2.0, ϕ̃0 = 3.0,
D̃ = 0.001,0.01,0.1.

difference �Eeff
SAW at the mesoscopic scale between the minima

and maxima of the effective potential deduced from the P (x̃)
curves of Fig. 8:

�Eeff
SAW = kBT ln[max(Pmax)/min(Pmax)] (32)

with Pmax the ensemble of local maxima of P (x̃) and max
(min) the ensemble maximum (minimum). Since both effective
energy differences, �Eeff

SAW [see Eq. (32)] and effective
potential Ueff [see Eq. (22)], govern the diffusion of the adatom,
and since Ueff quadratically depends on the amplitude of
the force F̃ , we can reasonably expect the same quadratic
dependence for �Eeff

SAW. However, note that while Ueff does
not take into account the stochastic force ξ̃ (t) nor the effective
crystalline potential, �Eeff

SAW implicitly takes into account
all these contributions. Figure 9 exhibits the dependence of
�Eeff

SAW as a function of F̃ 2 for γ̃ = 2, ϕ̃0 = 3.0, and for
D = 0.05, 0.1, and 0.2. �Eeff

SAW has been calculated from
P (x̃) curves similar to the ones of Fig. 8. We did not succeed
to calculate �Eeff

SAW as a function of F̃ for D < 0.05; the
average time needed by the particle to escape from an effective
crystalline potential being too long to obtain good statistics,
due to the activated character of this event with a 1/D

exponential dependence. The linear dependence of �Eeff
SAW as

a function of F̃ 2 is observed in the small forces regions where
the perturbation theory calculations of Sec. II A scientifically
sound. We note that increasing the diffusion coefficient or
the friction γ̃ (not shown) yields a smaller StAW structuring
effect, i.e., as already mentioned, the thermal noise challenges
the StAW structuring effect.

The results of this section demonstrates that the StAW
amplitude and the temperature, acting on the friction γ and the
diffusion coefficient D allow to tune the structuration induced
by the StAW. These information are essential to identify the
key parameters if one wishes to experimentally implement the
dynamic substrate structuring effect described here.
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VII. CONCLUSION

In this work, we have studied the solutions of the motion
equation of an adatom diffusing on a substrate submitted
to a StAW. To this aim, we have applied some standard
tools of the nonlinear physics to a simplified version of
the motion equation keeping the most relevant terms. No-
ticeably, an effective potential governing the slow dynamics
of the adatom has been derived. We have shown that this
effective potential controls the distribution of the adatom x

position even when considering the other additional terms
(noise, retarded effects, effective crystalline potential) in the
adatom motion equation. We underline the relevance of our
model when comparing calculated distribution probabilities
to positions histograms collected from molecular dynamics
simulations.9

Our present study opens different perspectives. In a recent
publication,9 we have discussed about the possibilities to
experimentally implement the dynamic substrate structuring
effect. We have noticeably mentioned the impossibility to
produce StAW with a wavelength in the nanometer range on
the substrate surface using the current available experimental
setups: to our knowledge, and in the state of the art, the
production of surface acoustic waves with wavelengths in the
100 nm range is possible using optical excitations.25 However,
the dynamic structuring effect does not directly depend on the
wavelength. Actually, the dynamic effect is expected to exist
as long as the adatom does not have the time to diffuse on a

wavelength λ during a period of the StAW, i.e.,

k � cs

Deff
, (33)

where Deff is the effective diffusion coefficient of the adatom
in the effective crystalline potential. One may thus consider
the possibility to use StAW with hundred nanometers wave-
lengths. Our present model and study will then be a very
fruitful tool to evince the optimized parameters (especially the
temperature and the StAW amplitude) leading to an efficient
structuring effect.

Theoretically, Eq. (11) exhibits a very rich and complex
dynamics. We have studied the solutions of this equation, but
we currently consider the possibility to derive the Fokker-
Planck equations for the adatom probability density functions.
Such equations would allow to directly derive the position
distribution P (x̃), and even perhaps to derive the effective
diffusion coefficient describing the diffusion of the adatom
between the different basins of the effective potential.

Finally, in this paper, we have focus on the structuring effect
induced by the StAW on the position distribution of the adatom
and have eluded the study of the dynamics of the adatom.
We have nevertheless exhibited the possibility for the adatom
to follow different qualitative types of trajectories depending
on the parameters γ̃ , F̃ , and ϕ̃0. The study of the adatom
dynamics, including the dependence of the StAW force on the
substrate lattice parameter scale is a natural perspective to this
work.
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