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A B S T R A C T

The structure of ledges in otherwise symmetrical tilt boundaries built from atomistic simulations
is investigated in copper in terms of continuous dislocation and generalized disclination fields. A
″discrete-to-continuum” crossover method is used to build the relevant kinematic and defect
density fields on the basis of discrete atomic displacements appropriately defined in the boundary
area. The resulting structure of incompatibility is compared with the so-called disconnection
model of boundary ledges. In addition to their dislocation content, which characterizes the elastic
displacement discontinuity across the boundary, the ledges appear to be characterized by dis-
continuities of the elastic rotation and dilatation fields, which are reflected by non-vanishing
generalized disclination density fields.

1. Introduction

Perfectly straight symmetrical tilt boundaries have been used as textbook examples to build models aimed at investigating the
structure and energy distribution of grain boundaries at interatomic resolution length scale, as well as their migration under stress.
Early models of planar grain boundaries were based on surface-dislocation densities, which were seen as the source of disorientation
between grains (Frank, 1950; Bilby, 1955). In this interpretation, any arbitrary disorientation can be accommodated by an appro-
priate distribution of surface-dislocations. These models are efficient at predicting geometrical properties of planar grain boundary
migration, such as the coupling factor relating the normal tilt boundary displacement to an imposed shear displacement (Cahn et al.,
2006). However, surface-dislocations-based models are necessarily limited to small misorientation angles. Indeed, as implied by
Frank's equation the density of surface-dislocations increases with the misorientation angle to the point where dislocation core
overlapping occurs at high angles (Li, 1972). In addition, surface-dislocations are singularly supported by an infinitely thin interface,
a premise at odds with high resolution observation of the atomistic structure of grain boundaries, which reveals periodic arrays of
elementary units spreading over a finite-width layer, perhaps as thin as a nanometer, but definitely not vanishingly thin. Atomistic
modeling has yielded a detailed understanding of the distribution of elastic energy in terms of these structural units (Sutton and
Vitek, 1983; Spearot et al., 2007; Wang et al., 2014) and have provided mechanisms for boundary migration under stress (Cahn et al.,
2006; Farkas et al., 2006; Tucker et al., 2010; Prieto-Depedro et al., 2015), at the price of heavy computational costs however. In
parallel with these developments, continuous representations of grain boundaries have also been found useful, because they allow
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analyzing dissipative and diffusive phenomena at time-scales beyond the limits inherent to atomistic simulations, and because they
lend themselves more easily to coarse-graining procedures. Such approaches include representations of grain boundaries at intera-
tomic resolution length scale in terms of arrays of disclination dipoles regularly spaced along the boundary (Li, 1972; Shi and Li,
1975; Gertsman et al., 1989; Fressengeas et al., 2014), or analyzes at a larger scale (Warner et al., 2006; Berbenni et al., 2013;
Upadhyay et al., 2016). In addition to retrieving the core energy of the tilt boundaries at all misorientations (Fressengeas et al.,
2014), the disclination dipole model allows capturing the correct dependence of shear coupled boundary migration on the mis-
orientation angle (Taupin et al., 2013, 2014). These results suggest that a continuous description involving displacement and crystal
defect density fields that are smooth over a length scale of interatomic spacing can be adequate for the purpose of describing
boundaries at this scale, and may usefully complement atomistic representations.

However, observations show that grain boundaries involve various defects affecting their periodic arrangements, such as atomic
inclusions, kinks, ledges and local curvatures, whose role is often overlooked (McDowell, 2010). Indeed, the motion of a planar grain
boundary under stress is unlikely to happen uniformly over large areas. Rather, small patches bounded by ledge loops should spread
sidewise through tangential motion of the latter along the boundaries. Such a mechanism is known to control the kinetics of pre-
cipitation or dynamic recrystallization (Aaronson, 1962). It was recently observed in grain boundary migration under shear stress in
ultra-fine-grained materials (Rajabzadeh et al., 2013). The involved interfacial line defects, here referred to as ”ledges”, have been
modeled as ”disconnections”, which are characterized by a combined dislocation and step character (Hirth, 1994; Hirth and Pond,
1996). A crystallographic analysis allows to identify the potential Burgers vectors and step heights for a disconnection from the
displacement shift complete (DSC) lattice of the bicrystal. However, due to its purely geometric nature, the ability of such an analysis
to capture the dynamic properties of ledges is limited (Cahn et al., 2006). Being indicative of rotation and strain discontinuities across
bounded surfaces, generalized disclinations are also able to correctly describe the step character of ledges but, in contrast to dis-
connection steps, they additionally feature a dissipative dynamics through driving forces and mobility laws in the framework of a
complete mechanical theory (Acharya and Fressengeas, 2012, 2015). Therefore we are interested in describing the elastic structure of
an otherwise symmetrical tilt boundary containing ledges in terms of smooth dislocation and generalized disclination density fields,
together with the relevant kinematic fields: the elastic displacement vector and first- and second-order distortion tensor fields. Note
that using standard disclinations in this model instead of generalized disclinations would have restricted the analysis to steps in-
volving only a rotation discontinuity. This continuous rendering of the defected boundary is built on its discrete atomistic re-
presentation, as obtained from molecular dynamic simulations, by using the ”discrete-to-continuum” crossover method introduced in
(Sun et al., 2016a).

The paper is organized as follows. In Section 2, the atomic modeling of a Σ17(410) tilt boundary in a copper bicrystal involving
ledges and the techniques bridging the discrete atomistic and continuum representations are briefly recalled, together with a primer
on the continuous representation of crystal defects in terms of dislocation and generalized disclination fields. Section 3 provides a
description of the ledges in terms of dislocation and generalized disclination fields, and compares with the structure of a straight
symmetrical tilt boundary. A discussion of these results is provided in Section 4, through comparisons between the structure of
incompatibility revealed by this analysis along the boundary and the disconnection model of ledges. The following conclusions focus
in particular on the potential applications of the present results to the study of the dynamics of ledges and migrating boundaries. The
mathematical notations are provided in the Appendix.

2. Atomistic modeling and continuous representation of ledged tilt boundaries

2.1. Atomistic description

We briefly present the molecular dynamic simulations used to generate the present boundary configurations. A detailed account
can be found in (Combe et al., 2016). In shear-coupled boundary migration, the relative in-plane displacement ut of two grains across
their planar boundary is accompanied by a displacement un of the boundary normal to its plane. The coupling factor =β u u/n t
characterizes the boundary migration. Depending on the temperature and shearing velocity (Cahn et al., 2006; Combe et al., 2016;
MacKain et al., 2017) or the normal stress (Combe et al., 2017)), different migration mechanisms corresponding to different coupling
factors can be activated. Here, we chose to analyze the Σ17(410)[001] tilt boundary in copper, for which two mechanisms have been
evidenced: the 100 mode characterized by a coupling factor = >β 1/2 0 and the 110 mode with a coupling factor = − <β 6/5 0
(Cahn et al., 2006), because this duality confers a wider perspective to our work. The simulations were conducted using the molecular
dynamics package LAMMPS (Plimpton, 1995) with the embedded atom potential provided in (Mishin et al., 1999). The simulation
cell contained 15 680 atoms in two symmetrical perfect copper crystals misoriented by a ∘28.07 angle about the [001] direction. Its
dimensions were respectively nm11.8 , nm10.7 and nm1.4 along the orthonormal basis e e e( , , )1 2 3 laid in the upper crystal directions
([140], [410], [001]) (see Fig. 1). In addition, two slabs nm1.6 -thick at the top and bottom of the simulation cell in the e2 direction were
frozen in the perfect lattice configuration. Periodic boundary conditions were applied in the e1 and e3 directions. The relative
displacement ut of the perfect slabs in the e1 direction produces a shear stress σ12 on the bicrystal, which induces boundary migration.
The Nudge Elastic Band (NEB) method is applied to determine the minimum energy path between the initial and final configurations
defined below. The migration is produced by shearing the equilibrium configuration in Fig. 1 a. used as the initial configuration,
respectively at K400 with the shearing velocity × − −m s9.4 10 .3 1 under the 100 mode and at K0 under the 110 mode. Note that this
shearing velocity is of the order of velocities used in (Cahn et al., 2006). The atomic configurations after migration (quenched to K0
for the 100 mode) are elastically unloaded at K0 to bring the slabs back to their initial positions. The resulting atomic configurations
are the final configurations of the minimum energy paths and are shown in Fig. 1 b.c. The calculations involved respectively 80 and
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800 NEB images in the 110 and 100 modes. They show that the boundary migration occurs through the nucleation and sidewise
motion in opposite directions of two ledges (Rajabzadeh et al., 2014; Combe et al., 2016). Fig. 1 b.c features the ledges moving to the
right when a positive shear stress is applied. Arrays of kite-shaped structural units pointing to the left are also revealed along the
boundary in both modes. In mode 100 , the structural units exhibit symmetry with respect to the interface and seem only slightly
distorted when passed by the ledge, whose height is of the order of 2 Å (see Fig. 1b). In mode 110 (see Fig. 1c), the step height is
about 2.5 Å and the structural units are seen to be significantly distorted in the ledge's wake. Analyzing the involved displacements
and distortions with the tools of continuum mechanics is instrumental in the following. Only the ledges shown in Fig. 1 were
analyzed, and we expect that our results can be extended by symmetry to the ledges not shown here.

2.2. From atomistic to continuum description of grain boundaries

The atomic locations in reference and current configurations are used to build the continuous representation of the grain
boundary. In the present case, the reference configuration is chosen to be the relaxed configuration of the boundary after shear, as
determined in Section 2.1, and the current configuration is the perfect lattice based on the atomic positions on a relaxed boundary
with a ledge. At first, the discrete values of the elastic displacement field = −u x Xe are calculated at each atom location in the
boundary area. Here, the vectors X and x reflect the atomic positions in the reference and current state, respectively. Then the
components =U uij

e
i j
e
, and =G uijk

e
i jk
e
, in the orthonormal frame e e e( , , )1 2 3 of the elastic first-and second-order distortion fields U G( , )e e

are calculated through finite difference schemes. Further, the dislocation and generalized-disclination density fields α π( , ) are found
from the relations (1,7,11) discussed below. Because they encounter discontinuities across bounded surfaces as will be seen in Section
2.3, we use a backward Euler finite difference scheme to differentiate the displacement and first-order distortion fields, and a forward
Euler finite difference scheme for the second-order distortion field because it has sufficient continuity across these surfaces. Finally,
all atoms are projected onto the plane e e( , )1 2 in Fig. 1, and two-dimensional interpolation in this plane is used to take advantage of
the symmetries of the crystal. The contour lines of all fields are plotted by using the following steps. All atoms are connected to tile
the e e( , )1 2 plane with non-overlapping Delaunay triangles. The intersections of the contour lines with the triangles edges are
determined by linear interpolation, and are eventually connected by bi-harmonic spline functions to generate smooth lines. Higher-
order interpolation schemes are possible by selecting more than two neighboring atoms for a given target-point, but they do not
improve significantly the results because the triangle edges are most often the steepest-descent lines for the jumps occurring between
two atoms. The fundamentals of this discrete-to-continuum crossover method were presented with more details in (Sun et al., 2016a)
where it was applied to a ∘Σ37(610)[100], 18.9 symmetrical tilt boundary in copper as a benchmark test, and its accuracy validated by
comparison with similar techniques recently published (Gullett et al., 2008; Zimmerman et al., 2009; Tucker et al., 2011). Additional
details were provided in (Sun et al., 2017) in the course of studying tilt boundaries in MgO.

2.3. Discontinuity and incompatibility in defected crystals

In his seminal 1907 paper, Volterra introduced six types of crystal line defects (Volterra, 1907). Three of them, known as

Fig. 1. Initial equilibrium configuration of the straight symmetrical Σ17(410) tilt boundary in a copper bicrystal misoriented by a ∘28.07 angle about the [001] direction
(a). Final configurations along the minimum energy path showing ledges moving to the right in the 100 upward migration mode at K400 (b) and the 110 downward
mode at K0 (c). Horizontal dotted lines sketch the initial position of the grain boundary. Red/blue balls represent atoms belonging to two consecutive planes normal to
e3. The period of the simulation cell is about three times longer than the figure in direction e1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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dislocations, are translational defects. The other three, referred to as disclinations, have rotational character. In the sole presence of
dislocations, the elastic displacement field ue of the dislocations features a discontinuity  ue across (non-unique) smooth surfaces
bounded by the dislocation lines, but the elastic distortion (strain and rotation) field Ue displays continuity in non-simply-connected
domains excluding their lines. A line integral of the elastic distortion field along any curve encircling the dislocation line, i.e. a
Burgers circuit, yields the constant vector  =b ue equal to the discontinuity of the elastic displacement and referred to as the
Burgers vector of the dislocation. Instead of Volterra's discrete representation of dislocations, we use here a continuous setting where
this description is regularized by acknowledging the existence of a finite dislocation core region. In this description, the elastic
displacement field is continuous across the dislocation core, but a Burgers circuit sufficiently distant from the core still leads to the
non-zero Burgers vector b. We consider smooth elastic distortion fields in simply connected domains including the core, which are
irrotational outside the core, but whose non-vanishing curl defines a smooth dislocation density tensor field inside the core:

=α curl U .e (1)

In the absence of disclinations, the Burgers vector can be computed from a surface integral of the tensorial density α over
appropriate patches S (see below Eq. (6)). In the additional presence of disclinations, a discontinuity  ωe in the elastic rotation tensor
fields ωe occurs over a surface terminating at the disclination line. Hence, smoothness of the elastic distortion field is lost, but the
elastic strain field εe retains continuity across this surface, except at the dislocation line where it has a singularity. The disclinations
are characterized by their Frank vector  =

→ωΩ e , which represents the magnitude and direction of the discontinuity of the rotation
vector over closed circuits encircling the disclination line. In deWit's continuous setting (deWit, 1970), also adopted in the present
paper by acknowledging the finiteness of the core region of the disclinations, the smooth elastic curvature field is irrotational outside
the disclination core, and the disclination density tensor is defined as the curl of this field inside the core:

=θ κcurl .e (2)

The tensors α and θ are smooth renditions of the Burgers and Frank vectors respectively. Indeed, the latter are obtained by
performing the following integrations over a closed circuit C surrounding the surface patch S of unit normal n:

∫= κΩ dr.
C

e
(3)

∫= − ×κb ε r dr( ( ) ). ,
C

e e
t t

(4)

where the superscript t denotes a transpose (see notations in Appendix), but also on integrating respectively over S the disclination
density tensor field:

∫= θ dSΩ n. ,
S (5)

and a combination of the dislocation density tensor with a vectorial product of the disclination density tensor and the position vector
r:

∫= − ×α θ dSb r n( ( ) ). .
S

t t

(6)

Eqs.(5) and (6) provide a direct link between the discontinuities of the elastic rotation and displacement and the smooth dis-
clination and dislocation density fields. By choosing appropriately the integration patch S, it is possible to obtain the Frank and
Burgers vectors of differential parts of the defects, as we shall see below in Figs. 3 and 5, or those of the whole defect. (Acharya and
Fressengeas, 2012, 2015) adopted a similar approach in introducing the generalized disclinations (”g-disclinations”). The g-dis-
clination concept goes beyond the Volterra construct in the sense that the elastic distortion field may now display a discontinuity  Ue

in both rotation and strain across surfaces terminating at g-disclination lines. The characteristic tensor Π of the g-disclination is
defined as the jump in the elastic distortion tensor field across such surfaces:  =Π Ue . In a continuous setting, the elastic second-
order distortion field Ge is irrotational outside the core region of the g-disclination where =G grad Ue e, whereas its curl is non-zero
inside the core where it provides for the definition of the third order g-disclination density tensor field π :

=π curl G .e (7)

The integration of Ge over closed circuits C surrounding patches S yields the jump of the elastic distortion tensor field:

∫=Π G dr. .
C

e
(8)

Equivalently the integration of π over the patch S leads to:

∫= π dSΠ n. .
S (9)

Eq. (9) provides a direct link between the discontinuity of the elastic distortion and the smooth g-disclination density field. The g-
disclination density tensor π complements the standard disclination density θ by possibly adding a discontinuity of strain to the
rotation discontinuity. The following relation links these tensors at small transformations:
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Fig. 2. Elastic rotation ω3 and wedge disclination θ33 component fields on top of the lattice in tilt boundary Σ17(410) with < >100 ledge (a,b) and < >110 ledge (c,d).
Wedge disclination θ33 field along the straight tilt boundary Σ17(410) (e). The black arrows in panels (a,c) underline the localized rotation patches in the ledge area,
from negative to positive rotation, and the disclination dipole.

Fig. 3. Differential Frank vector component Ω3 for straight tilt boundary Σ17(410) and tilt boundary Σ17(410) with < >100 and < >110 ledges. The ledge abscissa is 25 Å
(vertical dashed line).
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= −π ξ θX. (10)

where the third-order tensor ξ is associated with a discontinuity of the elastic strain tensor (and is therefore symmetrical in its first
two indices) and X is the third-order (alternating) Levi-Civita tensor (see Appendix). When, as a special case, the elastic strain field
retains continuity while the elastic rotation field presents a discontinuity, the g-disclinations reduce to standard disclinations. In the
presence of g-disclinations, the dislocation density tensor α cannot be defined through Eq. (1) as in the theory of dislocations, because
Ue does not have anymore the continuity that is needed in this relation. Instead, α is defined by alternating the 2-distortion tensor Ge

as follows:

= −α G X: .e (11)

The Burgers vector is still obtained from Eq. (6) in the presence of g-disclinations, but with the dislocation density tensor given by
Eq. (11). It is straightforward to show that Eq. (11) reduces to Eq. (1) when =G grad Ue e in the absence of g-disclinations (see
relation A-7 in the Appendix).

3. Continuous description of ledges

3.1. Standard disclinations

We start with the description of the ω3 elastic rotation and θ33 wedge disclination density component fields shown in Fig. 2,

Fig. 4. Dislocation fields α α( , )13 23 on top of the lattice. Straight Σ17(410) tilt boundary (a,b), tilt boundary Σ17(410) with < >100 ledge (c,d) and 110 ledge (e,f).
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together with Ω3 Frank's vector magnitude map in Fig. 3. The rotation field ω3 is shown in panels (2.a,2.b) for the two ledge modes. It
is essentially located within a nanometer thick layer along the boundary. For the upward 100 mode in panel (2.a), localized spots of
strong opposite magnitudes are seen across the interface at the tip and basis of each structural unit, with a maximum local magnitude
of the rotation of the order of ∘21 (0.38 rad). These spots are seen ahead of the advancing ledge (to the right of the ledge), but also to a
lesser degree in its wake (to its left). The pair of rotation spots at the tip of the structural unit tends to ”open” the crystal and are
associated with a positive wedge disclination, as shown in panel (2.c), whereas the rotation spots at the basis tend to “close” the
crystal and are associated with a negative wedge disclination. The similarity of these rotation and disclination fields with their
counterparts found in similar straight tilt boundaries (Fressengeas et al., 2014; Sun et al., 2016a) and in panel (2.e) is striking. The
ledge area contains opening and closing rotation spots (marked with an arrow from closing to opening) at angle with the normal to
the interface, but the disclination map in panel (2.c) is only slightly disturbed by the presence of the ledge. The “differential” Frank
vector magnitude shown in Fig. 3 reflects closely this evolution. It is calculated by using rectangular integration slices 1 Å wide in the
e1 direction and 10 Å high in the e2 direction as integration patches in Eq. (5). Note in particular that it decreases from head to tail of
the ledge, which corresponds to a decreased overall curvature level. Its maximum value is of the order of ∘13 (0.225 rad). The rotation
and disclination maps in the 110 downward mode follow similar evolutions in panels (2.b, 2.d), although the perturbations of the
fields are much stronger in the ledge area than in the < >100 mode. Again, this is closely reflected by the differential Frank vector size
in Fig. 3, whose maximum value is ∘21 .

3.2. Dislocations

In a similar way, we now comment the edge dislocation fields α α( , )13 23 shown in Fig. 4 and, in Fig. 5, the ”differential” Burgers
vector components b b( , )1 2 obtained by integrating over thin slices these two dislocation density fields and the wedge disclination
density field θ33 according to Eq. (6). In panels (4.a,b), the α13 and α23 edge dislocation density fields for the straight tilt boundary
Σ17(410) are found to be very similar to those previously obtained for a straight ∘Σ37(610)[110], 18.9 tilt boundary in copper (Sun
et al., 2016a). The Burgers vector is normal to the interface, as can be expected for a straight tilt boundary and as Fig. 5 shows. In
panels (4.c,d), the distributions ahead of the ledge of α13 and α23 in mode < >100 are similar to the fields in panels (4.a,b), but they
strongly differ in the ledge's wake. This is indicative of very different incompatible distortion fields. In both modes, the α23 dislocation
content and the normal component b2 of the differential Burgers vector are of same order on both sides of the ledge, but strong α13

contents and longitudinal components b1 of the Burgers vector are found in the ledge's wake, even more so in the < >110 mode. In the
ledge area, the dislocations are mostly α13 in both modes, with their differential Burgers vector in the longitudinal direction e1.
Integrating the differential Burgers vectors over the whole ledge area using a slice 17.5 Å wide leads to the Burgers vector component
of the ledge area ≅b 2.61 Å in the < >110 mode vs. ≅b 0.91 Å in the < >100 mode, in agreement with values provided in (Combe
et al., 2016).

3.3. Generalized disclinations

It was observed in Σ9 silicon bicrystals (Couillard et al., 2013) and evidenced in smooth renditions of molecular dynamics
simulations of tilt boundaries in copper using the present discrete-to-continuum technique (Sun et al., 2016a) that, besides the
discontinuity in lattice rotation, straight symmetrical tilt boundaries may involve a discontinuity of the shear strain field. In the
present interpretation, this discontinuity induces the presence of a non-vanishing smooth g-disclination field along the boundary. To
illustrate this feature, the π123 and π213 fields corresponding to the shear strain discontinuity  ε12 and rotation discontinuity  ω3 in the
straight Σ17(410) tilt boundary in copper are shown in Fig. 6(c,e). Strikingly, dipoles similar to the standard disclination dipoles are

Fig. 5. Differential Burgers vector components b b( , )1 2 for the straight tilt boundary Σ17(410) and tilt boundary Σ17(410) with 100 and 110 ledges. The ledge abscissa
is 25 Å (vertical dashed lines).
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observed at the ends of the structural units, with inverse polarities for π123 and π213. Since Eq. (10) reads here:

= −π ξ θ123 123 33

= +π ξ θ ,213 213 33

which entails = +ξ π π( )/2123 213 123 because =ξ ξ123 213, the relative values of π π( , )123 213 in Fig. 6(c,e) imply that the ξ213 dipoles have
same polarity as the θ33 dipoles. Thus, besides the rotation discontinuity, the structural units support a shear strain discontinuity. In
the presence of a 100 ledge along the boundary, the π π( , )123 213 g-disclination fields displayed in panels (6.b,d), are very similar to
their counterparts along the straight boundary shown in panels (6.c,e). Only limited perturbations are observed in the ledge area. To
a lesser degree, similar observations can be made for the 110 mode, although less neatly and although the perturbations of the g-
disclination fields in the ledge area are stronger (see Fig. 7).

More significant features are displayed by the stretch fields =U ε11 11 and =U ε22 22 along the boundary featuring a < >100 ledge in
Fig. 8 and a 110 ledge in Fig. 9. Strikingly, the U U( , )11 22 fields are continuous across the interface, except in the ledge area where
discontinuities1 marked by arrows can be noticed. In mode 100 ledges, discontinuities  = UΠ11 11 and  = UΠ22 22 are seen in Fig. 8,
but only a  = UΠ22 22 discontinuity can be noticed in the 110 mode in Fig. 9. Performing the integrations involved in Eq. (9) over a
rectangular box including all of the g-disclination dipoles leads to the stretch discontinuities: =Π 4.5%11 , =Π 12%22 in mode < >100
ledges and ≅Π 011 , =Π 7.5%22 in mode 110 ledges. Hence, these features, not seen with this intensity along straight tilt boundaries,
appear to be characteristic of ledges. In terms of g-disclination densities, they are reflected by strong π113 and π223 dipoles in the ledge
areas, as shown in Fig. 8(b,d) and Fig. 9c.

Fig. 6. Shear strain ε12 (a), g-disclination π123 (b) and π213 (d) fields on top of tilt boundary Σ17(410) with 100 ledge. G-disclination (c) π123 and (e) π213 fields of the
straight Σ17(410) tilt boundary.

1 In the present smooth representation of lattice incompatibility, strong variations of field variables within a very short distance are called discontinuities for their
sharply defined distribution (Sun et al., 2016a, 2017). For example, the jump of U22 from 15% to − 20% in less than 3 Å in the ledge area in Fig. 8 c is called a
discontinuity.
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4. Discussion

Following (Hirth, 1994; Hirth and Pond, 1996), the interfacial defects referred to above as ledges are described as disconnections
exhibiting both dislocation and step character.2 The Burgers vector of the dislocation component reflects the incompatibility of the
elastic distortion needed to join the adjacent crystals when their corresponding surfaces are not complementary or when their relative
positions break their complementarity. It can be determined by Burgers circuit mapping as in Eq. (4), or by integrating the dis-
location/disclination densities over the appropriate surface as in Eq. (6), and as shown above. The step character of the disconnection
is not seen as being the result of an incompatibility and is not determined by circuit mapping. Its height h is defined as the extent of
material overlap normal to the interface when the adjacent crystals are placed together to make contact without imposing the elastic
distortion needed to join their corresponding surfaces (Hirth and Pond, 1996). The representation of the ledges emerging from this
model in the present Σ17(410) boundaries is displayed in Fig. 10. The step height h is simply the height of the ledge above the perfect
interface in mode 100 , or below this interface in mode < >110 (see Fig. 10), and the Burgers vector of the dislocation component of
the disconnection is longitudinal.

Clearly, the main difference between the disconnection model and the dislocation/g-disclination description of the 100 and 110
ledges through continuous rendering of their atomistic structure is that distortion incompatibility arises only from displacement
discontinuity in the disconnection model, implying the sole presence of dislocations, whereas rotation and strain discontinuities are
also involved in the present description of first- and second-order distortion incompatibility, which induces the additional presence of
non-vanishing g-disclination fields. Concomitantly, the step character of the disconnection is absent per se from the description in
terms of dislocations and g-disclinations. However, the information it contains also pertains to the description of second-order
incompatibility, where it allows characterizing the rotation and strain closure defects. This is illustrated by the sketches in Fig. 11. In
particular, the step height h can be viewed in this figure as the projection of the arm-length of the g-disclination dipole on the normal
to the interface.

5. Summary and concluding remarks

The discrete-to-continuum crossover method of (Sun et al., 2016a) provides a continuous rendering of the atomistic structure of
100 and 110 ledges in a Σ17(410) tilt boundary in copper. The description of the imperfect boundary is given in terms of the
displacement field with respect to the perfect lattice and the first-order distortion (rotation and strain) and second-order distortion
fields. Discontinuities in displacement, rotation and strain are found across bounded areas along the boundary. In addition to

Fig. 7. In-plane shear strain ε12 (a), g-disclination π123 (b) and π213 (c) fields on top of tilt boundary Σ17(410) with 110 ledge.

2 The word disconnection has been used in (Fressengeas and Taupin, 2014, 2016) to define crystal defect densities in the presence of fracture, in reference to the
disruption of material connectivity occurring in this context. Of course, such is not the case in the present analysis where continuity of the material is assumed
throughout the paper.
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discontinuities already found in the straight parts of the boundary and discussed earlier in several papers (Sun et al., 2016a, 2016b,
2017), significant displacement, rotation and stretch discontinuities are observed in the ledges areas. These discontinuities are re-
flected in the incompatibility of the first- and second-order distortions and in the dislocation and g-disclination density fields re-
spectively. In particular, the occurrence of stretching g-disclination dipoles appears to be characteristic of the investigated ledges.
This description is compared with the disconnection model of ledges, as proposed by (Hirth, 1994; Hirth and Pond, 1996) in terms of
dislocations and steps.

The incompatibility of the first-order distortion and the dislocation fields are identical in the disconnection and dislocation/g-
disclination models. Due to its geometrical nature, the step character of the disconnections is only indirectly linked with this in-
compatibility. In the present analysis, the step characteristics appear to be also associated with the incompatibility of the second-
order distortion, as manifested by the presence of standard disclination and stretching g-disclination dipoles in the ledges areas. In
contrast with the ”second-order” perception that may arise from this association, the step height is not a second-order effect, as its
value may be comparable with or even larger than the magnitude of the Burgers vector of the defect. Such significant values derive
from large rotation and stretch discontinuities in the ledge area.

Being interpreted in terms of g-disclination fields, the step fully participates to lattice incompatibility in the ledge area. Hence,
ledges have an elastic energy not only from the incompatible strains associated with dislocations, but also from the incompatible
second-order distortions associated with the g-disclinations, which includes the incompatible curvatures associated with standard
disclinations. Their elastic properties and interactions with other crystal defects may therefore be interpreted by using the elasto-
static equations of the mechanical theory of dislocation and g-disclination fields (Acharya and Fressengeas, 2012, 2015). Their
evolutions in time may also be modeled by additionally employing the dynamic equations for plasticity and phase transformation
introduced in this theory. In the latter, the dislocation and g-disclination fields have a natural dynamics through transport laws.
Similar to dislocation densities, g-disclination densities are assigned velocities and Peach-Koehler-type driving forces. By relating
velocities to driving forces, mobility laws compatible with the thermodynamic requirement for positive dissipation complete the
description. When adequate mobility laws are chosen on physical grounds, the spatio-temporal evolutions of the displacement,
dislocation and g-disclination fields can be deduced from the set of partial differential equations of the theory as the solution of

Fig. 8. In-plane distortion U11 (a), (b) g-disclination π113, (c) U22, and (d) g-disclination π223 fields on top of tilt boundary Σ17(410) with 100 ledge. The arrows
underline the localized U11 and U22 spots in the ledge area.

X.Y. Sun et al. International Journal of Plasticity 104 (2018) 134–146

143



boundary value problems. As a natural consequence, the motion of the dislocation and step components of ledges is governed by
dynamic laws of a similar nature, consistent with the observation of ledges propagating as persistent objects along grain boundaries
(Rajabzadeh et al., 2013). Interestingly, dislocation and g-disclination fields built on the example of the present analysis may serve as

Fig. 9. In-plane distortionU11 (a), g-disclination π113 (b), in plane distortionU22 (c), and g-disclination π223 (d) fields on top of tilt boundary Σ17(410) with < >110 ledge.
The arrow underlines the localized U22 spot in the ledge area.

Fig. 10. Disconnection model for the < >100 ledge, strained configuration (a), relaxed configuration (b), and the < >110 ledge, strained configuration (c), relaxed
configuration (d). The points (F′, S′) of the relaxed configuration are images of the points (F, S) of the current configuration in the inverse elastic distortion. The vector

′ ′F S is the true Burgers vector b conventionally obtained from the oriented Burgers circuit starting at points ′S S( , ) and finishing at points ′F F( , ). b h( , ) are the Burgers
vector and step magnitudes. The corresponding surfaces of crystals α and β are complementary, but the disconnections are not pure steps because their different
positions in the reference configuration destroy this complementarity.
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initial conditions in the determination of the eventual dynamics of crystal defect ensembles. Examples of such solutions for the
evolution of displacement, dislocation and disclination fields in straight tilt boundaries were provided in (Taupin et al., 2013, 2014;
Cordier et al., 2014). Hence, the present analysis opens avenues for the study of the elastic properties of imperfect boundaries
featuring ledges, their interactions with extrinsic crystal defects such as impiging dislocations or triple junctions, and for the pre-
diction of their spatio-temporal evolutions, particularly in relation with their migration under stress. Comparisons with experimental
measurements on grain boundary migration could then allow for a proper identification of the involved ledge mobility laws.
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Appendix A. Mathematical notations

A bold symbol denotes a tensor. When there may be ambiguity, an arrow is superposed to represent a vector:
→
V . The transpose of

tensorA is denoted by At. The tensor ⋅A B, with rectangular Cartesian components A Bik kj, results from the dot product of tensors A and
B, and ⊗A B is their tensorial product, with components A Bij kl. The vector ⋅A V, with rectangular Cartesian components A Vij j,
results from the dot product of tensor A and vector V . A: represents the trace inner product of the two second-order tensors

= A BA B: ij ij, in rectangular Cartesian components, or the product of a higher order tensor with a second order tensor, e.g.,
= A BA B: ijkl kl. In the component representation, the spatial derivative with respect to a Cartesian coordinate is indicated by a comma

followed by the component index. The cross product of a second-order tensor A and a vector V and the curl operation for second-
order tensors are defined row by row, in analogy with the vectorial case. For any base vector ei of the reference frame:

× ⋅ = ⋅ ×A V e A e V( ) ( )t
i

t
i (A.1)

⋅ = ⋅curl A e curl A e( ) ( ).t
i

t
i (A.2)

In rectangular Cartesian components:

× = e A VA V( )ij jkl ik l (A.3)

= e Acurl A( ) ,ij jkl il k, (A.4)

Fig. 11. Sketch of ledge model using dislocations and g-disclinations. Relaxed configuration (a), step configuration obtained in the presence of the g-disclination dipole
(b), strained configuration (c). Bonding the corresponding surfaces A Bα α and A Bβ β of crystals α β( , ) into AB requires: (i) the rotation and stretch discontinuities of

A Bα α with respect to A Bβ β :   =ω Ω3 3,   =U Π11 11,   =U Π22 22 to render the crystals surfaces complementary from (a) to (b) (presence of g-disclinations and

incompatibility of second-order distortion) and, (ii) the displacement discontinuity   =u b1 1 to effectively bond the crystals surfaces in a translation of one crystal with
respect to the other from (b) to (c) (presence of dislocations and incompatibility of first-order distortion). A standard disclination of Frank vector   =ω Ω3 3 and a
dislocation of Burgers vector   =u b1 1 would be sufficient to match the surfaces A Bα α and A Bβ β if they had same length:    = =U U 011 22 . The filled and open

triangles indicate the g-disclination dipole.
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where ejkl is a component of the third-order alternating Levi-Civita tensor X: =e 1jkl for even permutations of j k l( , , ), = −e 1jkl for odd
permutations and =e 0jkl otherwise. For a third-order tensor A, the components are:

× = e A VA V( )ijk klm ijl m (A.5)

= e Acurl A( ) .ijk klm ijm l, (A.6)

Note that (A.4, A.6) read

= −curl A grad A X: (A.7)

in intrinsic form.
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