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Abstract

What are the mechanisms leading to the growth of nanostructures when preformed clusters are deposited on a

surface? We present here the main physical processes which control the density and shape of the islands. As these

processes span a large time scale, their understanding demands a variety of simulation approaches. We will focus here

on an important issue for future technological applications of cluster deposition: the relation between the size of the

incident clusters and the size of the islands obtained on the substrate. Kinetic Monte Carlo simulations of two- and

three-dimensional islands show that the shape relaxation of the nanocrystallites cannot be explained by the usual

theories of equilibration. Indeed, below the roughening temperature, the relaxation is much slower, kinetics being

governed by the nucleation of a critical germ on a facet. This dramatically changes the size dependence of the equili-

bration time. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Growth of new materials with tailored proper-
ties is one of the most active research directions for
physicists, the electronics revolution representing
a paradigm. The search for smaller and smaller
opto-electronic devices has lead to the new field of
nanostructure growth, where one tries to obtain
ordered arrays of structures containing a few
atoms. There are different ways to build up nano-
structured systems, the most popular being atomic
deposition. Roughly speaking, the atoms depo-
sited on the substrate diffuse and aggregate into
islands of varying sizes. One would like to control
the atomic diffusion and aggregation in order to

form only the desired structures, adjusted in size,
interparticle distance and, for alloys, atomic com-
position. This is a very difficult task, which has
only been carried out in specific cases, mostly by
taking advantage of elastic long range forces [1]
or by ‘‘engineering’’ the substrate, i.e. by creating
defects (as atomic steps) which act as nucleation
centers [1,2].
Here we will focus on an alternative technique

to form nanoislands on substrates, which consists
in preforming the islands (as free clusters) before
deposition and then depositing them. It should
be noted that the cluster structure can be exten-
sively characterized prior to deposition by several
in-flight techniques such as time-of-flight spect-
rometry, photo-ionization or fragmentation [3].
Moreover, the properties of these building blocks
can be adjusted by changing their size, which also
affects the growth mechanisms, and therefore the
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film morphology [4]. There are several additional
interests for depositing clusters. First, these are
grown in extreme nonequilibrium conditions,
which allows one to obtain metastable structures
or alloys. For example, PdPt alloy clusters––which
are known to have interesting catalytic proper-
ties––can be prepared with a precise composition
(corresponding to the composition of the target
rod, see below) and variable size and then depos-
ited on a surface [5]. This allows one to tune within
a certain range the properties of the films by
choosing the preparation conditions of the pre-
formed clusters. It might also be anticipated that
cluster nucleation is less sensitive to impurities
than atomic nucleation. Atomic island growth can
be dramatically affected by them, as exemplified by
the celebrated case of the different morphologies of
Pt islands grown on Pt(111) [6] which were actually
the result of CO contamination at an incredibly
low level: 10�10 mbar [7]. Instead, clusters, being
larger entities, might interact less specifically with
the substrate and its impurities.

2. Models of particle deposition

We describe in this section simple models which
allow one to understand the first stages of film
growth by low energy cluster deposition. These
models can also be useful for understanding the
growth of islands from atomic beams in the sub-
monolayer regime in simple cases, namely (almost)
perfect substrates, irreversible aggregation, etc.,
and they have allowed workers to understand and
quantify many aspects of the growth: for a review
of analysis of atomic deposition with this kind of
models, see [1,8]. Given an experimental system
(substrate and cluster chemical nature), how can
one predict the growth characteristics for a given
set of parameters (substrate temperature, incoming
flux of clusters, . . .)?
A first idea––the ‘‘brute-force’’ approach––

would be to run a molecular dynamics (MD)
simulation with ab initio potentials for the par-
ticular system one wants to study. It should be
clear that such an approach is bound to fail since
the calculation time is far too large for present-day
computers. Even using empirical potentials (such

as Lennard–Jones (LJ), embedded atom or tight-
binding) will not do because there is an intrinsi-
cally large time scale in the growth problem: the
mean time needed to fill a significant fraction of
the substrate with the incident particles. An esti-
mate of this time is fixed by tML, the time needed to
fill a monolayer: tML ’ 1=F , where F is the particle
flux expressed in monolayers per second (ML/s).
Typically, the experimental values of the flux are
lower than 1 ML/s, leading to tML P 1 s. There-
fore, there is a time span of about 13 decades be-
tween the typical vibration time (10�13 s, the lower
time scale for the simulations) and tML, rendering
hopeless any ‘‘brute-force’’ approach.
There is a rigorous way [9] of circumventing

this time span problem: the idea is to ‘‘coarsen’’
the description by defining elementary processes,
an approach somewhat reminiscent of the usual
(length, energy) renormalization of particle phy-
sics. One ‘‘sums up’’ all the short time processes
(typically, atomic thermal vibrations) in effective
parameters (transition rates) valid for a higher level
(longer time) description. We will now briefly de-
scribe this rigorous approach and then proceed to
show how it can be adapted to cluster deposition.

2.1. Choosing the elementary processes

Voter [9] showed that the interatomic potential
for any system can be translated into a finite set of
parameters, which then provides the exact dy-
namic evolution of the system. Recently, the same
idea has been applied to LJ potentials (Schroeder
et al., 1997) by using only two parameters. The
point is that this coarse-grained, lattice–gas ap-
proach needs orders of magnitude less computer
power than the MD dynamics described above.
Unfortunately, this rigorous approach is not use-
ful for cluster deposition, because the number of
atomic degrees of freedom (configurations) is too
high. Instead, one chooses––from physical intu-
ition––a ‘‘reasonable’’ set of elementary processes,
whose magnitudes are used as free parameters.
This allows one to understand the role of each of
these elementary processes during the growth and
then to fit their value from experiments. These are
the models which we will study in this paper, with
precise examples of parameter fit.
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2.2. Predicting the growth from the selected ele-
mentary processes

To be able to adjust the values of the elemen-
tary processes from experiments, one must first
predict the growth from these processes. The old-
est way is to write ‘‘rate-equations’’ which describe
in a mean-field way the effect of these processes on
the number of isolated particles moving on the
substrate (called monomers) and islands of a given
size. However, this analytical approach is mean-
field in nature and cannot reproduce all the char-
acteristics of the growth. Two known examples are
island morphology and island size distribution
[10].
The alternative approach to predict the growth

is kinetic Monte Carlo (KMC) simulations. KMC
simulations are an extension of the usual Monte
Carlo algorithm and provide a rigorous way of
calculating the dynamical evolution of a compli-
cated system where a large but finite number of
random processes occur at given rates. KMC
simulations are useful when one chooses to deal
with only the slowest degrees of freedom of a
system, these variables being only weakly coupled
to the fast ones, which act as a heat bath. The
‘‘coarsened’’ description of film growth (basically,
diffusion) given above is a good example, but
other applications of KMC simulations include
interdiffusion in alloys, slow phase separations,
pinning/depinning transitions in dislocation diffu-
sion, . . . The principle of KMC simulations is
straightforward: one uses a list of all the possible
processes together with their respective rates mpro
and generates the time evolution of the system
from these processes taking into account the ran-
dom character of the evolution. For the simple
models of film growth described below, systems
containing up to 4000� 4000 lattice sites can be
simulated in a reasonable time (a few hours),
which limits the finite size effects usually observed
in this kind of simulation.
A serious limitation of KMC approaches is that

one has to assume a finite number of local envi-
ronments (to obtain a finite number of parame-
ters): this confines KMC approaches to regular
lattices, thus preventing a rigorous consideration
of elastic relaxation, stress effects, . . . everything

that affects not only the number of first or second
nearest neighbors but also their precise position.
Indeed, considering the precise position as in MD
simulations introduces a continuous variable and
leads to an infinite number of possible configura-
tions or processes. Stress effects can be introduced
approximately in KMC simulations, for example
by allowing a variation of the bonding energy of
an atom to an island as a function of the island size
(the stress depending on the size), but it is unclear
how meaningful these approaches are.

2.3. Basic elementary processes for cluster growth

What is likely to occur when clusters are de-
posited on a surface? We will present here the el-
ementary processes which will be used in cluster
deposition models: deposition and diffusion of the
clusters and their interaction on the surface (Figs.
1 and 2).
A simple physical rationale for choosing only a

limited set of parameters is the following (see
Fig. 3). For any given system, there will be a

Fig. 1. Main elementary processes considered in this paper for

the growth of films by cluster deposition: (a) adsorption of a

cluster by deposition; (b) and (d) diffusion of the isolated

clusters on the substrate; (c) formation of an island of two

monomers by juxtaposition of two monomers (nucleation); (d)

growth of a supported island by incorporation of a diffusing

cluster.

Fig. 2. Possible interaction of two clusters touching on the

surface: (a) pure juxtaposition; (b) total coalescence. Interme-

diate cases (partial coalescence) are possible and will be de-

scribed later.
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‘‘hierarchy’’ of time scales, and the relevant ones
for a growth experiment are those much lower
than tML ’ 1=F . The others are too slow to act and
can be neglected.
The hierarchy of time scales (and therefore the

relevant processes) depends of course on the pre-
cise system under study. It should be noted that
for cluster deposition the situation is somewhat
simpler than for atom deposition since many ele-
mentary processes are very slow. For example,
diffusion of clusters on top of an already formed
island is very low [11], cluster detachment from the
islands is insignificant and edge diffusion is not an
elementary process at all since the cluster cannot
move as an entity over the island edge (as we will
discuss in Section 3.2, the equivalent process is
cluster–cluster coalescence by atomic motion). Let
us now discuss in detail each of the elementary
processes useful for cluster deposition.
The first ingredient of the growth, deposition, is

quantified by the flux F, i.e. the number of clusters

that are deposited on the surface per unit area and
unit time. The flux is usually uniform in time, but
in some experimental situations it can be pulsed,
i.e. change from a constant value to 0 over a given
period. Chopping the flux can affect the growth of
the film significantly [12].
The second ingredient is the diffusion of the

clusters which have reached the substrate. We
assume that the diffusion is Brownian, i.e. the
particle undergoes a random walk on the sub-
strate. To quantify the diffusion, one can use both
the usual diffusion coefficient D or the diffusion
time s, i.e. the time needed by a cluster to move by
one diameter. These two quantities are connected
by D ¼ d2=ð4sÞ, where d is the diameter of the
cluster. Experiments show that the diffusion co-
efficient of a cluster can be surprisingly large,
comparable to the atomic diffusion coefficients.
The diffusion is here supposed to occur on a perfect
substrate. Real surfaces always present some de-
fects such as steps, vacancies or adsorbed chemical
impurities. The presence of these defects on the
surface could significantly alter the diffusion of
the particles and therefore the growth of the film
[8].
The last simple process we will consider is the

interaction between the clusters. The simplest case
is when aggregation is irreversible and particles
simply remain juxtaposed upon contact. This oc-
curs at low temperatures. At higher temperatures,
cluster–cluster coalescence will be active (Fig. 2).
Thermodynamics teaches us that coalescence
should always happen but without specifying the
kinetics. Since many clusters are deposited on the
surface per unit time, kinetics is here crucial to
determine the shape of the islands formed on the
substrate. A total comprehension of the kinetics is
still lacking, for reasons that we will discuss later
(Section 3.2).
The usual game for theoreticians is to combine

these elementary processes and predict the growth
of the film. For example, in the simplest version of
these models [8], where one only includes deposi-
tion, Brownian diffusion and irreversible aggrega-
tion, the saturation island density Nsat (see Fig. 5a)
obeys

Nsat ¼ 0:41ðF sÞ0:36: ð1Þ

Fig. 3. Time scales of some elementary processes considered in

this paper for the growth of films by cluster deposition (see also

[8]). The relevant processes are those whose time scale are

smaller than the deposition time scale shown by the arrow in

the left. In this case, models including only cluster diffusion on

the substrate and cluster–cluster coalescence are appropriate.

‘‘Island diffusion’’ refers to the motion of islands of clusters as a

whole, ‘‘cluster dissociation’’ to the evaporation of atoms from

the cluster and ‘‘interdiffusion’’ to the exchange of atoms in the

cluster with substrate atoms.
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However, experimentalists are interested in the
reverse strategy: from (a set of) experimental re-
sults, they wish to understand which elementary
processes are actually present in their growth ex-
periments and what the magnitudes of each of
them are, what physicists call understanding a
phenomenon. The problem, of course, is that with
so many processes, many combinations will re-
produce the same experiments (see specific exam-
ples in [8]). We will give a single example of how
these models can help understand the physics of
growth, and refer the interested reader to [8] for
more details.

2.4. A simple case: Sb2300 clusters on graphite
HOPG

The growth of antimony cluster films has been
thoroughly investigated [11] and represents a clear
example of the interest of the Monte Carlo models.
Fig. 4a shows a general view of the morphology of
the antimony submonolayer film for e ¼ 0:14 ML
and Ts ¼ 353 K. A detailed analysis [11] of this
kind of micrographs shows that the ramified is-
lands are formed by the juxtaposition of particles
which have the same size distribution as the free
clusters of the beam. From this, we can infer two

important results. First, clusters do not fragment
upon landing on the substrate. Second, antimony
clusters remain juxtaposed upon contact and do
not coalesce to form larger particles (Fig. 2a).
From a qualitative point of view, Fig. 4a also

shows that the clusters are able to move on the
surface. Indeed, since the free clusters are depo-
sited at random positions on the substrate, it is
clear that, in order to explain the aggregation of
the clusters in those ramified islands, one has to
admit that the clusters move on the surface. How
can this motion be quantified? Can we admit that
diffusion and pure juxtaposition are the only im-
portant physical phenomena at work here?
Fig. 5a shows the evolution of the island density

as a function of the deposited thickness. We see
that the saturation island density Nsat is reached
for e ’ 0:15 ML. This indicates [8] that evapora-
tion or island diffusion are not important in this
case. Therefore, we guess that the growth should
be described by a simple combination of deposi-
tion, diffusion of the incident clusters and juxta-
position. This has been confirmed in several ways.
We only give two different confirmations, directing
the reader to [8] for further details. First, a com-
parison of the experimental morphology and that
predicted by models including only deposition,

Fig. 4. Typical island morphologies obtained experimentally by TEM (a) and from the computer simulations (b) at the same coverage.

(a) Sb2300 deposition on graphite HOPG at Ts ¼ 353 K. The deposited thickness is 0.5 nm or e ¼ 0:14 ML; (b) model including only
deposition, diffusion and pure juxtaposition of the incident clusters, F s ¼ 9� 10�11.
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diffusion and pure juxtaposition shows a very good
agreement (Fig. 4b). We have also shown [8] that
the saturation island density accurately follows the
prediction of the model when the flux is varied. If
the islands were nucleated on defects of the sur-
face, the density would not be significantly affected
by the flux.
Having carefully checked that the experiments

are well described by the simple DDA model, we
can confidently use Eq. (1) to quantify the diffu-
sion of the clusters. The result is a surprisingly
high mobility of Sb2300 on graphite, with diffusion
coefficients of the same order of magnitude as the
atomic ones, i.e. 10�8 cm2 s�1 (Fig. 5b). Moreover,
the prefactor D0 of the Arrhenius equation D ¼ D0
expð�Ea=kT Þ is unexpectedly high: D0 ¼ 104 cm2

s�1. The canonical value for atomic diffusion is
instead D0 ¼ 10�3 cm2 s�1, seven orders of magni-
tude lower! We have no explanation of this huge
difference at the moment, although it is interesting
to note that Wang et al. [13] have also found high
prefactors for cluster diffusion when the cluster
moves by gliding as a whole on the surface.

3. How do clusters diffuse and coalesce?

In the preceding sections we have tried to ana-
lyze the film growth with the help of two main
ingredients: diffusion of the clusters on the surface

and their interaction. We have taken the diffusion
as just one number quantifying the cluster motion,
without worrying about the microscopic mecha-
nisms which could explain it. For atomic diffusion,
these mechanisms have been extensively studied
and are relatively well known. In the (simplest)
case of compact (111) flat surfaces, diffusion oc-
curs by site-to-site jumps over bridge sites (the
transition state). Therefore, diffusion is an acti-
vated process and plotting the diffusion constant
vs. the temperature yields the height of the barrier,
which gives information about the microscopies of
diffusion. This kind of simple interpretation is not
valid for cluster diffusion. It is always possible to
infer an ‘‘activation’’ energy from an Arrhenius
plot (see Fig. 5c) but the meaning of this energy is
not clear since the precise microscopic diffusion
mechanism is unknown. Similarly, cluster–cluster
coalescence (Fig. 2) has been supposed to be total
or null (i.e. pure juxtaposition) but without con-
sidering the kinetics or the intermediate cases
which can arise.
In this section, we describe some simulations

which can shed light on the microscopic mecha-
nisms leading to cluster diffusion or coalescence.

3.1. 3D island diffusion mechanisms

It has been shown [8,14] that the main para-
meter determining the mobility of 3D islands on a

Fig. 5. (a) Evolution of the island density as a function of the deposited thickness. The solid line is a fit to the experimental data with

F s ¼ 1:75� 10�8. (b) Dependence of the diffusion coefficient on the temperature. From a fit on the experimental data (solid line), one
finds D ¼ D0 expð�Ea=kT ), with Ea ¼ 0:7� 0:1 eV and D0 ¼ 104 cm2 s�1. The island densities are expressed per site, a site occupying

the projected surface of a cluster, equivalent to 2:08� 10�13 cm2.
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substrate is the possible epitaxy of the cluster on
the substrate. Indeed, if the island reaches an
epitaxial orientation, it is likely to have a mobility
limited by the individual atomic movements,
which give a small diffusion constant (of order
10�17 cm2 s�1 at room temperature). Diffusivities of
this magnitude will not affect the growth of cluster
films during typical deposition times, and clusters
can be considered immobile. If the island is not in
epitaxy on the substrate, high mobilities can be
observed because the cluster sees a potential profile
which is not very different from that seen by a
single atom. It should be noted that this nonepi-
taxy can be obtained when the two lattice para-
meters (of the substrate and the island) are very
different, or also when they are compatible if there
is relative misorientation. MD simulations [14]
show that, for LJ potentials, only homoepitaxy
prevents clusters from moving rapidly on a sur-
face. It should be noted that relaxation of the
cluster or the substrate––which would favor a
locking of the cluster in an energetically favorable
position at the expense of some elastic energy––has
not been observed in these LJ simulations. An-
other important parameter is the cluster–substrate
interaction: one can think that a large attractive
interaction (for metal on metal systems, for ex-
ample) can induce an epitaxial orientation and
prevent the cluster from diffusing, even in the
heteroepitaxial case.

3.2. Cluster–cluster coalescence

What happens when two clusters meet? If they
remain simply juxtaposed, morphologies similar to
Fig. 4a are observed. In this case, the incident
clusters have retained their original morphology,
and the supported particles are identical to them,
even if they are in contact with many others after
cluster diffusion. It is clear, by looking for example
at Fig. 6, that in some experimental situations the
supported islands are clearly larger than the inci-
dent clusters, indicating that some coalescence has
taken place. How can one understand and predict
the size of the supported particles? Which are the
relevant microscopic parameters? This is an inter-
esting question from the fundamental point of
view, since it is not clear that the theoretical tools

which have been developed to deal with the kinetic
evolution of macroscopic objects (size larger than
a micrometer) by Herring [15] and Nichols and
Mullins [16] can be used at the nanometer scale.
These equations, which are based on coarse-
grained, continuous equations, lead to an equili-
brium time teq which increases as the fourth power
of the object linear size. For example, one could
wonder whether sintering of ceramic or metallic
nanopowders can be analyzed with these classic
tools since it is not clear that macroscopic concepts
such as curvature, chemical potential, etc., should
retain their relevance when dealing with struc-
tures containing only a few atoms. Studying the
validity of the partial differential equations ap-
proach at various length scales and temperatures is
important since this formalism is also used by ex-
perimentalists to interpret their data and by the-
oreticians as a black box to calculate the time
evolution of different structures [8,17–20].
Several authors [21–23] have studied the kinet-

ics of unsupported cluster–cluster coalescence by
MD simulations. They have shown that the first
stages (a few ns) of this process consist in a plastic
deformation of the particles leading to the building
of a ‘‘neck’’ at their contact point. Then, the evo-
lution seems to stop at the time scales that can be
reached by this kind of approach. This ‘‘locking’’
has been attributed [21] to the presence of facets.

Fig. 6. Islands obtained by gold cluster deposition (Au250) on

graphite HOPG at Ts ¼ 423 K. The small dot in the lower right
corner (just above the scale bar) indicates the size of an incident

cluster.
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The precise role of the facets in the coalescence
process is a subject of current interest. Experi-
ments have shown that shape evolution is very
slow in presence of facets for 3D crystallites [24].
To investigate this point further, we have carried
out extensive KMC simulations of 2D and 3D
cluster–cluster coalescence. These simulations are
not intrinsically limited in the time scales that
can be investigated and could therefore help in
understanding the role of facets and the limitations
of the continuous approach.

3.2.1. Physical model
We use standard KMC simulations to study the

equilibration of 2D (3D) crystallites having a tri-
angular (fcc) crystalline structure. Since we are
only interested in finding generic laws for the size
dependence of teq (which should not depend on the
details of atom–atom interaction), we have chosen
a very simple energy landscape for atomic motion
[25]. We assume that the potential energy Ep of an
atom is proportional to its number i of neighbors,
and that the kinetic barrier Eact for diffusion is also
proportional to the number of initial neighbors,
before the jump, regardless of the final number of
neighbors, after the jump Eact ¼ �Ep ¼ iE, where
E sets the energy scale (E ¼ 0:1 eV throughout the
paper). Therefore, the probability pi per unit time
that an atom with i neighbors moves is pi ¼ m0
exp½�iE=kBT 	, where m0 ¼ 1013 s�1 is the Debye
frequency. Thus, our simple kinetic model includes
only one parameter, the ratio E=kBT , where kB is

the Boltzmann constant and T the absolute tem-
perature. The initial configuration of the clusters is
elongated, and we stop the relaxation when the
crystallites are close to equilibrium, with an aspect
ratio of 1.2.

3.2.2. Simulation results
Figs. 7a and b show log–log plots of the rela-

xation time as a function of the linear dimension of
the 2D and 3D islands, respectively. The compar-
ison between two and three dimensions reveals, as
happens with all comparisons, some similarities
and some differences. In both cases, the continuous
approach, which predicts a slope of 4, is correct
only for the highest temperatures. The physics
behind the failure of this macroscopic approach is
also similar [25,26].
At high temperatures, the island perimeter

(surface) is rough, full of traps for the diffusing
atoms, and the usual (individual) atomic surface
diffusion is efficient to transfer mass from the high
chemical potential regions (the tips of the islands)
to the low potential ones (the center of the island).
Herring [15] and Nichols and Mullins [16] have
quantified this physical process long ago: taking
the chemical potential as proportional to the local
curvature, and using matter conservation and lin-
ear response theory, one reaches inevitably the
fourth power law in agreement with our Monte
Carlo simulations. This result then validates the
use of the concept of curvature at microscopic
scales.

Fig. 7. Evolution of the equilibration time as a function of its characteristic length for (a) 2D and (b) 3D islands containing N atoms.

The numbers indicate the slope of each linear fit, to be compared to the prediction of the continuous theory (slope ¼ 4).
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At lower temperatures, facets begin to appear,
and single atom diffusion can no longer transfer
matter from the tips to the center, because these
atoms simply wander on top of the facets to be-
come trapped again in the tips. Therefore, a sup-
plementary step has to be overcome for the island
to approach equilibrium: the nucleation of new
atomic lines or terraces. So far, flat and 3D islands
behave similarly: now come the differences, since,
after all, when the temperature is lowered, the size-
dependence exponent rapidly increases in three
dimensions, whereas it slowly decreases in two
dimensions (Figs. 7a and b).
In three dimensions, the increase of the size

exponent (which is actually due to an exponential
behavior) is a consequence of the presence of a
nucleation energy barrier which depends on the
crystallite size [26]. The nucleation of a germ on a
facet is formally similar to the creation of a liquid
germ within a gas phase, except that in our case
the chemical potential of the atoms in the ‘‘gas’’
depends on the size of the crystallite because these
atoms come from the tips, whose curvature (which
fixes the chemical potential, see above) is size de-
pendent. Therefore, as the crystallite size increases,
an ever larger nucleation barrier has to be over-
come, which induces an exponential increase in the
relaxation time. In two dimensions, a careful
analysis [25] shows that the decrease of the expo-
nent leads to an N dependence of the relaxation
time at very low temperatures. Due to the presence
of facets, the diffusion is not at all a limiting pro-
cess, and the limiting step of the relaxation is the
nucleation of a germ of the size of the smallest
facet on a larger facet [27]. The average time
s2 particles needed to create a two-particles germ on a
facet can be shown to be independent of the size of
the facet: s2 particles / s23=s2 (where si ¼ 1=pi, pi de-
fined in Section 3.2.1). This step is the most diffi-
cult one of the creation of the critical germ: it
imposes its activation energy on the limiting step
duration. Once a two-particles germ has been
created, the germ has a probability 1=ðl� 2Þ to
grow up to the critical size l without disappearing
[27]. The duration of the whole limiting step of the
relaxation is then about slimiting / s23ðl� 2Þ=s2/
s23l=s2. It is important to note that slimiting is the
time to transport l particles from a facet to an-

other. If L is the size of the largest facet, the nu-
cleation of a critical germ has to be repeated about
L� l times so that the crystallite goes back to its
equilibrium shape. The relaxation time then scales
as: srelaxation / ðL� lÞs23l=s2 / s23N=s2.

4. Conclusions

The combination of Monte Carlo and molecu-
lar dynamics simulation techniques can shed light
on the physics of nanostructure growth from
cluster beams. Specifically, by comparing the ex-
perimental evolution of the island density as a
function of the number of deposited particles to
the predictions of computer simulations, one can
obtain quantitative information about the rele-
vant elementary processes. For example, we have
shown that large clusters can move rapidly on the
surface, with diffusion constants comparable to the
atomic ones. To understand this high diffusivity at
the atomic level demands the use of MD simula-
tions [14]. Concerning cluster–cluster coalescence,
it has been suggested that this process can be much
slower than predicted by the usual sintering theo-
ries, because of the cluster facets. Below the
roughening transition, the route to equilibrium has
to involve nucleation of new atomic planes, which
needs more time, leading to an exponential in-
crease of teq as a function of the cluster size for 3D
crystallites.
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