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Abstract. We theoretically study the propagation of sound waves in GaAs/AlAs superlattices focusing
on periodic modes in the vicinity of the band gaps. Based on analytical and numerical calculations, we
show that these modes are the product of a quickly oscillating function times a slowly varying envelope
function. We carefully study the phase of the envelope function compared to the surface of a semi-infinite
superlattice. Especially, the dephasing of the superlattice compared to its surface is a key parameter. We
exhibit two kind of modes: Surface Avoiding and Surface Loving Modes whose envelope functions have their
minima and respectively maxima in the vicinity of the surface. We finally consider the observability of such
modes. While Surface Avoiding Modes have experimentally been observed [Phys. Rev. Lett. 97, 1224301
(2006)], we show that Surface Loving Modes are likely to be observable and we discuss the achievement of
such experiments. The proposed approach could be easily transposed to other types of wave propagation
in unidimensional semi-infinite periodic structures as photonic Bragg mirror.

PACS. 43.35.+d Ultrasonics, quantum acoustics, and physical effects of sound – 63.20.D- Phonon states
and bands, normal modes, and phonon dispersion – 68.65.Cd Superlattices – 78.67.Pt Multilayers;
superlattices

1 Introduction

Propagation of waves in periodic structures have been
studied for decades [1]. Indeed, the periodicity leads to
band gaps where propagation is forbidden. This property
is very general and could be observed in many different
fields. Electrons in crystals experience the periodic atomic
potential leading to electronic band gaps [2]. Electromag-
netic waves cannot propagate in a spatial periodic dielec-
tric constant system if their frequencies fall in the band
gap: Photonic crystals [3,4] are based on this statement.
Elastic waves in solids could also endure a periodic Young
modulus and/or a periodic density. Studies on such sys-
tems are currently numerous [5–7] and lead to a new field
of physics namely Phononics [8,9].

In periodic structures, two kinds of vibrations can
be pointed out: (1) extended eigenmodes that propagate
through the system; their frequencies fall out of the gaps
and they satisfy the Floquet-Bloch theorem; (2) localized
modes that can be found around isolated defects including
surfaces [10] (surface modes belong to this category). Due
to their localized character, these modes are not so sensi-
tive to the periodicity of the underlying Crystal and thus
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their frequency can take any value, in particular within
the forbidden band gaps.

Extended acoustical vibrations in superlattices (SL)
have been described quantitatively in the frame of the
elastic model in the middle of the century [11]. The su-
perlattice, with its long period compared to the under-
lying crystals periods, results in a much shorter recip-
rocal Brillouin zone and hence a multiple folding of the
initial acoustical branches. Experimentally, observations
of these folded acoustical vibrations have first been per-
formed using Raman scattering experiments for which se-
lection rules are now well understood [12,13]. Since the
nineties, time-domain optical experiments have investi-
gated folded acoustical vibrations [14–17]. They exhibit
two types of modes: phonons with finite wave vectors
(q �= 0) and zone-center modes (q = 0) in the reduced
Brillouin zone.

Recently, Trigo et al. [18] studied both theoretically
and experimentally these zone-center modes in phononic
semi-infinite GaAs/AlAs SL yielding two conclusions.
First, modes near the Brillouin zone-center observed by
pump-probe experiments have not rigorously a zero wave
vector, but instead an almost zero wave vector q ≈ 0. Sec-
ond, these modes present a slowly varying envelope wave
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function with an amplitude minimum in the vicinity of the
surface: they claim these modes “have a tendency to avoid
the boundaries, irrespective of the boundary conditions”
and for this reason, refer to them as Surface Avoiding
Modes (SAM). Note that these Surface Avoiding modes
have also been encountered near photonic [19] and acous-
tic [20] band gap materials and their nature is very gen-
eral. In this work, we study in detail acoustical modes
in the vicinity of Brillouin zone center, focusing on their
avoiding character near the GaAs/AlAs SL surface.

Our work is based on analytical studies corrobo-
rated by numerical simulations. Analytical calculations
are based on the analogy between the propagation of
waves in a periodic structure and the spatial parametric
oscillator. Since this analogy is not well-known, we devote
Section 2 to prove the fruitfulness of such analogy to de-
scribe waves in periodic structures in the vicinity of gaps.
Considering the propagation in an infinite SL of longitudi-
nal modes in the vicinity of band gaps, we show that these
modes are the product of a fast oscillating function and a
slowly varying envelope function. We derive the dispersion
diagram in the vicinity of band gaps using the parametric
oscillator equations. Then considering the case of a semi-
infinite SL in Section 3, we give the analytical expression
of longitudinal waves assuming free boundary conditions
and considering the dephasing of the SL compared to its
surface. We show the existence of Surface Avoiding and
Surface Loving Modes depending if the envelope function
is minimum or maximum near the SL surface. We then
discuss in detail the avoiding or loving character of modes
near the center of the Brillouin zone. In Section 4, we dis-
cuss on the electron-phonon coupling of these modes and
show both Surface Avoiding and Loving Modes are likely
to be observable using time-domain optical experiments
or Raman and Brillouin scattering experiments. Finally,
Section 5 will be devoted to a discussion on our results.

2 Parametric oscillator

2.1 Parametric oscillator analogy

We consider the propagation of a sound wave in an uni-
dimensional infinite SL made of 2 solid materials: respec-
tively named A and B. dA and dB are the width of the
layers, and d = dA + dB is the period of the SL. If u is
the atomic displacement, in each material sound waves are
solutions of:

Δu − 1
c2i

∂2u

∂t2
= 0 (1)

where ci is the sound speed in the materials (i = A,B).
To determinate sound waves in a SL from equation (1),
one needs to apply at each interface, the continuities of
the displacement field and of forces dF = ¯̄σdS acting on
each elementary interface dS, where ¯̄σ is the stress tensor.

In a SL, the displacements can be determined exactly
by the transfer matrix method [21]. Though very powerful,
and clearly grounded, this method suffers from its numer-
ical nature. It is not easy to get analytical expressions for
finite size superlattices.

In this work, we will use the analogy between the prop-
agation of sound waves in periodic media and the para-
metric oscillator. As it will be shown, this analogy in-
volves severals approximations we will justify. However,
it has two benefits. First, it yields analytical expressions
of the displacements in closed form, with relatively sim-
ple calculations. Second, and especially, it allows to point
out and to understand the main physical phenomena
near the Bragg reflexions in the SL. We stress that the
present treatment is complementary to the transfer ma-
trix method and does not pretend to challenge it for quan-
titative analysis.

Finally, one must note that the present method could
be applied to the propagation of light in photonic crystals
or electrons in crystals [22,23] since their wave propagation
equations are similar.

From now on, we consider a harmonic, plane, lon-
gitudinal sound wave of angular frequency ω: u(z, t) =
u(z)e−iωtez along the z-axis, perpendicular to the SL lay-
ers. Continuity of forces acting on each interface imposes
the continuity of C11(z)

du(z)
dz where C11 is the stiffness

constant, for a longitudinal sound wave propagating along
z. In the following, we will focus on GaAs/AlAs superlat-
tices, because they are the most experimentally used su-
perlattices. Stiffness constant contrast between GaAs and
AlAs is very weak: ΔC11/C11 ≈ 0.014 so that the conti-
nuity of C11(z)du(z)/dz at each interface reduces to the
continuity of du(z)/dz. In such a case, the determination
of sound waves in the SL can be directly achieved by the
resolution of equation (1) considering only the variation of
the sound speed since u(z) becomes a C2 function1. Con-
sequently, since the sound speed in a GaAs/AlAs SL is a
periodic function of z, we may expand 1

c2 as a Fourier se-
ries 1

c2 = a0 +
∑∞
m=1 am cos(2πmz

d )+bm sin(2πmz
d ), so that

sound waves in GaAs/AlAs superlattices are solutions of:

d2u

dz2
+ ω2a0

[

1 +
∞∑

m=1

am
a0

cos
(

2πmz
d

)

+
bm
a0

sin
(

2πmz
d

)]

u = 0. (2)

We now introduce G = 2π/d the primitive vector of the re-
ciprocal lattice, cm = am/a0 and dm = bm/a0 the reduced
amplitudes of the mth harmonic, and k0(ω) = ω

√
a0 the

zero order wave number i.e. the wave number a wave would
have in the absence of any periodic modulation of the
sound speed. k0(ω) = ω

√
a0 is the usual dispersion re-

lation for acoustic phonons in an homogeneous medium
with mean sound speed c0 = 1/

√
a0. Equation (2) then

reads like a parametric oscillator equation in spatial coor-
dinates:

d2u

dz2
+k2

0(ω)

[

1 +
∞∑

m=1

cm cos(mGz) + dm sin(mGz)

]

u = 0.

(3)
1 An extension of the following calculations to SL with high

stiffness constant contrast could be achieved, we expect the
same qualitative conclusions.
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Fig. 1. Phase diagram of the Mathieu equation. Parameters
inducing non periodic solutions are in dashed regions (“para-
metric resonances” or “band gaps”).

2.2 Single harmonic approximation

Equation (3) includes all harmonics of the inverse square
sound velocity. In order to understand the effect induced
by the different harmonics, let us first consider the effect
of an isolated harmonic. Equation (3), in this case, reduces
to a Mathieu equation [24] of the form:

d2u

dz2
+ k2

0 [1 + a cos(kez)]u = 0 (4)

ke is the wave number of the periodic excitation. General
solutions of equation (4) are periodic except in some re-
gions of the plane (k0/ke, a): they are then the product
of an oscillating function with a linear combination of an
increasing and a decreasing exponential. These non peri-
odic solutions correspond to the resonances of the para-
metric oscillator or band gaps of the SL. Figure 1 presents
the stability diagram of equation (4) limited to the first
four resonances as a function of k0/ke and a: regions of
non-periodic solutions are dashed. This diagram has been
calculated numerically using the resolvent of equation (4)
and the Liouville and Floquet-Bloch theorems [24].

Regions of non periodic solutions form in the plane
(k0/ke, a) bands that, when a tends to 0, converge to
points k0/ke = n/2 with n ∈ IN∗. i.e. wave numbers
ke = 2k0, k0, 2k0/3, k0/2, . . . etc. Moreover, for a � 1,
it can be shown [25] that the band width of the nth res-
onance is a decreasing function of n proportional to an.
As a result, the larger resonance is obtained for n = 1 i.e.
for ke = 2k0, the most famous resonance of the paramet-
ric oscillator, corresponding to an excitation twice faster
than the zero order wave number.

Hence, going back to equation (3), varying the value
of k0, each harmonic m of the excitation at wave num-
ber mG, if treated independently, is expected to create
band gaps around k0

mG = n
2 . Thus, band gaps occur for

2k0
G = nm = l ∈ IN∗. Figure 2 schematically presents the

band gaps independently created by each of the first fifth
harmonics. Excepted the first band gap (l = 1) due ex-
clusively to the first harmonic (m = 1), all other band

9

8

7

5

6

4

3

2

1

a cos(2G z) a cos(3G z) a cos(4G z) a cos (5G z)
1 2 3 4 5

a cos(G z)
l= 2k

m=1 m=2 m=3 m=4 m=5

n=1

n=2

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=1

n=1

n=1

n=1

n=2

n=2

n=2

n=3

n=3

n=4

0

G

Fig. 2. Schematic illustration of band gaps produced by each
harmonic.

gaps result from at least two harmonics. However, as a
first approximation, since the larger resonance due to the
mth harmonic is for n = 1 i.e. around k0

mG = 1
2 , we con-

sider that the lth band gap of equation (3) is essentially
due to the first resonance (n = 1) of the lth harmonic
(m = l). We call this approximation the single harmonic
approximation (SHA). This approximation is equivalent
to treating the modulation of the sound speed as a first
order perturbation: |cm| � 1 and |dm| � 1 ∀m ∈ IN∗.
Our main motivation for the SHA is the possibility to
derive analytical calculations and the possibility to pro-
duce good analytical approximations of solutions of equa-
tion (3) around a given gap. Of course, the validity of SHA
will be discussed below in the considered case. Note that
values of k0 for which there are no periodic solution, corre-
spond to a range of frequencies ω which is the usual band
gap of the SL. Indeed, k0 has been defined by k0 = ω

√
a0

in Section 2.1.

2.3 Infinite medium: band gap

In order to test the validity of SHA, we solve equation (3)
near the resonance2 at ω(2)

BG defined by k0(ω
(2)
BG) = G i.e.

the first resonance due to several harmonics (m = 1 and
m = 2). The expression of ω(2)

BG reads: ω(2)
BG = G/

√
a0.

The superscript “(2)” in ω
(2)
BG refers to the second band

gap. Using the SHA, this band gap is only produced by
the harmonic at 2G in the Fourier series of 1/c2. We thus
study a reduced equation taking into account only that
harmonic:

d2u

dz2
+ k2

0 [1 + c2 cos(2Gz) + d2 sin(2Gz)]u = 0 (5)

2 A similar study could be done in the vicinity of any band
gap as soon as the SHA is checked.
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where we have simplified the notation of k0(ω) using k0.
The SHA will be checked a posteriori. Switching to com-
plex number representation and introducing p2 = c2−id2

2 ,
equation (5) reads:

d2u

dz2
+ k2

0(1 + p2e
i2Gz + p̄2e

−i2Gz)u = 0, (6)

where p̄2 denotes the complex conjugate of p2. Similarly
to the resolution of the parametric oscillator equation by
Landau and Lifchitz [25], we change the coordinate system
to A(z) and B(z) defined by:

u(z) = A(z)eiGz +B(z)e−iGz (7)

where A(z) and B(z) are slowly varying functions. In-
troducing equation (7) in equation (6) and neglecting fast
oscillating terms (at wavevector 3 G) as well as the second
derivatives of A(z) and B(z), the identification of coeffi-
cients of plane waves at G and −G reads:

[
dA
dz

dB
dz

]

=

⎡

⎣
−k2

0−G2

2iG − p2k
2
0

2iG

p̄2k
2
0

2iG
k2
0−G2

2iG

⎤

⎦
[
A
B

]

(8)

whose general solutions are:

A(z) = A+e
iκz +A−e−iκz (9a)

B(z) = B+e
iκz + B−e−iκz (9b)

where κ is given by:

κ2 =

[
(k2

0 −G2)2

4G2
− |p2|2 k4

0

4G2

]

=
(
k2
0

2G

)2 (
δ2 − |p2|2

)
(10)

and

δ =
k2
0 −G2

k2
0

(11)

δ characterizes the detuning between the excitation wave
number G and the zero order wave number k0.

The system undergoes a bifurcation when κ2 changes
its sign as a function of ω:

– either κ2 < 0. Solutions of equation (9) are then hy-
perbolic: A(z) and B(z) are a linear combination of
increasing and decreasing exponentials. And therefore,
no propagation can occur in the SL. The condition
κ2 < 0 defines the band gap of the SL around ω(2)

BG;
– or κ2 > 0. Solutions of equation (9) are sinusoidal and

the general solution u(z) is thus periodic. Note that in
this case, the spectrum of u(z) will be composed of a
mixing of G+κ and G−κ plane waves. u(z) is then the
product of a quickly oscillating function at G, times a
slowly varying functions at κ. Moreover, equation (10)
establishes a relation between ω (through k0(ω)) and
wave vectors G ± κ i.e. the dispersion relation of the
SL around the considered gap.

Note that the band gap only depends on the squared mag-
nitude of p2: |p2|2 = c22+d

2
2

4 i.e. on the amplitude of the
second harmonics at 2G.

Besides, we already pointed out the similarities of
sound waves propagation in SL and electron waves prop-
agating in crystals [22]. Usually, when studying the inde-
pendent electrons in a weak crystalline potential, one ap-
plies the first order perturbation theory to determine the
width and position of electronic band gap [2]: the expres-
sion of the band gap width is analogous to equation (9a)
and could be derived using the parametric oscillator anal-
ogy and the SHA [23].

2.4 Dispersion diagram: numerical study

In this part, we will numerically check our analytical re-
sults of Section 2.3 and the SHA applying our predictions
on a GaAs/AlAs SL with dA = dGaAs = 5.9 nm and
dB = dAlAs = 2.35 nm. Such a SL has been used in an
experimental setup by Trigo at al. [18]. For these materi-
als, longitudinal sound speeds are [21]:

cA = cGaAs = 4726 ms−1 (12a)

cB = cAlAs = 5630 ms−1. (12b)

These parameters will be used in all the numerical exam-
ples given in this article.

Figure 3 compares the dispersion diagram obtained
from equation (10) (SHA approx.) and the transfer ma-
trix method [21] (exact solutions) for this SL. Figure 3 is
restricted to the two first band gaps respectively due to
the harmonics at spatial frequencies G and 2G. We would
like to emphasize that in equation (10), the first band gap
is obtained using coefficient p1 = c1−id1

2 (instead of p2)
and the second bang gap using only p2 = c2−id2

2 whereas
the transfer matrix method considers all harmonics.

According to Figure 3, our predictions of band gaps
with the SHA are in good agreement with the exact cal-
culation of the transfer matrix method. Moreover, disper-
sion diagrams around the gaps also agree very well. They
slowly diverge when moving away from the gaps: the A
and B functions are varying faster and thus their second
derivatives are not negligible any more. In addition, the
development in equation (7) neglecting harmonics of or-
der higher than 2 and keeping only the main term around
wave numberG is no longer appropriate. Finally, the SHA,
keeping only one harmonic in equation (3) naturally be-
comes inadequate when moving too far away from the gap.

Figure 3 validates our SHA for the first and second
band gaps; and it is easy to convince oneself that it is
also true for any of the SL band gaps in a first order ap-
proximation. Below, we will focus on periodic solutions
around the second band gap: SL eigenmodes in the vicin-
ity of this gap will thus be well described by solutions of
equation (6).
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ω
(l)
BG = lG

2
√

a0
. Parameters corresponding to the SL described

in Section 2.4 have been used.

3 SAM and SLM

In the previous section, we have studied the general so-
lution of equation (3) and derived the dispersion diagram
of the SL. Since experiments always involve a finite SL,
we now consider the effects of the presence of a free sur-
face at z = 0 with definite boundary conditions on SL
eigenmodes.

3.1 Semi-infinite medium: surface effects

More precisely, we intend to study periodic solutions of
equation (3) in the vicinity of the band gap at ω(2)

BG using
free boundary conditions i.e. u(0) = u0 and du

dz (0) = 0. In
the following, we will use the abbreviation NBPM (near
bang gap propagative mode) in reference to such modes.
Figure 4 plots 1/c2 as a function of z. The dephasing τ of
the SL compared to z = 0 is defined in Figure 4. As shown
below, τ will be a key parameter in our study. Coefficients
a0, cm and dm in equation (3) are calculated from the
Fourier components of 1

c2 :

a0 = 1/c20 = γ
1
c2A

+ (1 − γ)
1
c2B

(13a)

cm = 2
c20
c2A

− c20
c2B

πm
cos(πm(2α+ γ)) sin(πmγ) (13b)

dm = 2
c20
c2A

− c20
c2B

πm
sin(πm(2α+ γ)) sin(πmγ) (13c)

dτ

d

zz=0

1/c2

1/c

1/c

d

2

2

A

B

A B

Fig. 4. (Color online) Schema of the SL compared to the sur-
face z = 0.
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or

pm =
cm − idm

2
=

(
c20
c2A

− c20
c2B

)
e−i2πmγ − 1

−i2πm e−i2πmα

(13d)
where α = τ/d is the reduced dephasing and γ = dA/d
is the cycle ratio of the SL. The mean sound speed c0 is
defined by equation (13a).

Since we study NBPM in the vicinity of the second
band gap around ω(2)

BG, it is instructive to consider the evo-
lution of p2 as a function of the cycle ratio γ for different
values of the reduced dephasing α as shown in Figure 5.
p2 vanishes twice as the cycle ratio γ varies from 0 to 1.

So there are two values of γ, independent of α, for
which the SHA predicts no gap opening around ω(2)

BG. Note
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that a gap might actually be opened through the second
parametric resonance n = 2 produced by the first har-
monic m = 1 (cf. Fig. 2).

For a given γ, the effect of α is merely to rotate the
figure by −2πmα, as seen in equation (13d). Note that
experimentally, most of the SL have α = 0 and that for
α = 0, p2 as a function of γ never cross the real axis except
when p2 = 0: we will illustrate below to what extend the
case p2 non null and real is relevant.

Details of the resolution of equation (6) are given in
Appendix A. Since we are focusing on periodic modes, i.e.
outside the gap, κ2 in equation (10) is positive. Let us
introduce ψ the argument of p2:

p2 = |p2| eiψ . (14)

The solution u(z) satisfying the free boundary conditions
u(0) = u0 and du/dz(0) = 0 reads

u(z) = 2A0 [(1 − ζ) cos(Gz + ψ/2) cos(κz + φ)
−(1 + ζ) sin(Gz + ψ/2) sin(κz + φ)] (15)

where ζ, φ and A0 are defined by

ζ =
δ

|p2| −
√(

δ

|p2|
)2

− 1 (16)

tanφ = − tan(ψ/2)
G(1 − ζ) + κ(1 + ζ)
G(1 + ζ) + κ(1 − ζ)

(17)

A0 =
u0

2
[
(1 − ζ) cos ψ2 cosφ− (1 + ζ) sin ψ

2 sinφ
] (18)

u(z) is real and u(z, t) is a stationary wave, as expected
since the surface is a perfect mirror for acoustic waves.

Equation (15) is linear combination of two terms each
involving a quickly oscillating function at G and a slowly
one at κ corresponding respectively to Bloch and envelope
wave functions. The parameter ζ governs the relative con-
tributions of each term and hence their dominant charac-
ter which we will discuss in Section 3.2.2. The parameter φ
is a dephasing of the envelope function with respect to the
SL surface: it will be discussed in Section 3.2.3. A0 governs
the global amplitude of the displacement field. There are
in general beatings in the solution u(z), as emphasized by
the analytical expression for its root mean squared enve-
lope urms, derived in Appendix B:

u2
rms(z) = 2A2

0

[
1 + ζ2 − 2ζ cos 2(κz + φ)

]
(19)

where the fast oscillating terms at G present in equa-
tion (15) have been smoothed out.

3.2 Surface loving and avoiding modes

In this section, we discuss the effect of the reduced de-
phasing α of the SL compared to the surface z = 0 on
NBPM near the second gap around ω

(2)
BG. We especially

focus on the phase of the envelope wave function at wave
vector κ. Examining the general case requires a numerical
study. However, two limiting cases where p2 is real, are
remarkable.

3.2.1 Remarkable cases. Pure SAM and pure SLM

• p2 is real and p2 > 0 (α = α2 or α2 + 1/2 in Fig. 5).
Therefore from (14), ψ = 0 and from (17), φ = 0[π].
– Just above the gap, we have δ ≈ |p2| (cf. Eqs. (10)

and (11), implying ζ ≈ 1 (Eq. (16)). Thus from
equation (15), the main contribution to u(z) is pro-
portional to sin(Gz) sin(κz): the envelope of the vi-
bration mode is null at the surface. Following the
denomination of Merlin [26], we call such a mode
a Surface Avoiding Mode (SAM): these SL eigen-
modes shy away from the boundaries.

– Just below the gap, δ ≈ − |p2| and thus ζ ≈ −1.
The main contribution to u(z) is cos(Gz) cos(κz):
The envelope amplitude is maximal at the surface.
In view of that, we refer to such SL eigenmode as
Surface Loving Mode (SLM).

• p2 is real and p2 < 0 (α = α1 or α1 + 1/2 in Fig. 5),
ψ = π and thus φ = π/2[π].
– Just above the gap, δ ≈ |p2|. The main contribu-

tion to u(z) is then sin(Gz + π/2) sin(κz ± π/2) =
± cos(Gz) cos(κz). Therefore, the SL eigenmode
corresponds to a surface loving mode.

– Just below the gap δ ≈ − |p2|. The main contri-
bution to u(z) is cos(Gz + π/2) cos(κz ± π/2) =
± sin(Gz) sin(κz): therefore, the SL eigenmode cor-
responds to a Surface Avoiding Mode.

Note that we have chosen to base the latter discussion on
equation (15), but equation (19) could also be used and
leads to the same conclusions.

If the distinction between SAM and SLM is obvious in
the cases where p2 is real, in the general case we need a
more precise definition: we will speak about SAM or SLM
depending if the envelope amplitude at the surface (z = 0)
is smaller or higher than its value a quarter period later
at z = λκ

4 = π
2κ where λκ is the wavelength associated

with the envelope wave function. With this definition, ac-
cording to equation (19), knowing ζ and φ is enough to
determine the SAM or SLM character.

3.2.2 Beatings contrast

Let us focus on ζ which, as previously quoted, governs the
relative amplitude of the two contribution in equation (15)
and hence drive the beatings contrast, which is defined in
equation (B.4) and plotted in Figure 6 as a function of the
frequency ν = ω

2π . From Figure 6, the contrast reaches its
maximum value of 1 only at the precise band gap edges.
In such a case, the envelope function exactly vanishes at
its minimum: one could then speak about perfect SAM or
SLM. Moving away from the gap, the contrast tends to
0 giving the same weight to both terms in equation (15).
These beatings are also present in an infinite SL, just like
in a temporal parametric oscillator. Away from the reso-
nance condition, the excitation goes successively in-phase
and out-of-phase with the movement of the system, lead-
ing to an increase or a decrease in the amplitude of the
oscillations.



N. Combe et al.: Surface loving and surface avoiding modes 53

0.50 0.55 0.60 0.65
Frequency (cm

-1
)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
as

t C

 1 
−ζ ζ

gap

Fig. 6. Beating contrast C of the displacement u, defined in
equation (B.4) as a function of the frequency ν = ω

2π
. C equals

ζ above the gap and 1
−ζ

below. Parameters corresponding to
the SL described in Section 2.4 have been used. Dot circles
mark a beating contrast of 0.5 for frequencies 0.5807 THz and
0.6182 THz.

3.2.3 SAM or SLM?

To get a strong SAM or SLM, a good beating contrast is
needed. Then if the envelope has a minimum or a maxi-
mum at the surface, it is a SAM or a SLM, respectively.
Indeed, from equation (19) the phase of the envelope rel-
ative to the SL surface depends essentially on φ and on
the sign of ζ. The latter is seen in Figure 6 to be negative
below the gap and positive above. In this section we focus
on φ, the dephasing of the envelope function.

For a given type of SL (materials and thicknesses), φ
depends essentially on the frequency ν = ω

2π and on the
reduced dephasing α of the SL. As in the whole article,
we use here the numerical parameters of the SL described
in Section 2.4 whose dispersion diagram is plotted in Fig-
ure 3.

Figure 7a presents in a 3D plot the variations of φ as
a function of α and of the frequency ν, calculated using
equation (17) around the second band gap. Figure 7b re-
ports the value of φ as a function of α for two frequencies
above and below the gap: 0.5807 THz and 0.6182 THz.
These two frequencies reported in Figure 6, correspond to
a 0.5 beating contrastC (Eq. (B.4)), so that at 0.5807 THz
(resp. 0.6182 THz), the displacement u(z) (Eq. (15)) is
dominated by the cos(Gz + ψ/2) cos(κz + φ) term (resp.
sin(Gz + ψ/2) sin(κz + φ)).

From Figures 7a and 7b, φ is a periodic function of α
with period 1

2 at fixed frequency ν: indeed, we are looking
at the second band gap due to the harmonic at wavevector
2G; by changing α from 0 to 1, the surface z = 0 sweeps
two periods of that harmonic. For example, the two re-
markable modes discussed above for which p2 is real, could
be obtained for two values of α: these values are obtained
by cancelling the d2 term in equation (13c) (n = 2). This

(a)

0.0 0.2 0.4 0.6 0.8 1.0
α

-0.5

0.0

0.5

Φ π

(b)

Fig. 7. (Color online) (a) Value of φ (color blue φ = −π/2,
red φ = π/2) as a function of the frequency ν (THz) and the
reduced dephasing α. In the gap, φ is not defined. (b) φ as
a function of α at 0.5807 THz (black) and 0.6182 THz (red).
Dark curves separate SAM and SLM regions. These curves
have been calculated looking for couples (α, ν) that equal the
envelope wave function amplitude in z = 0 and z = π

2κ
, and

correspond to φ = ±π
4

(cf. Eq. (19)). Parameters corresponding
to the SL described in Section 2.4 have been used.

has also been illustrated in Figure 5. The case p2 real and
positive corresponds to α = α2 = 3/4 − γ/2 � 0.39 or
α = α2 +1/2 = 5/4−γ/2 � 0.89, whereas the case p2 real
and negative corresponds to α = α1 = 1/2 − γ/2 � 0.14
or α = α1 + 1/2 = 1 − γ/2 � 0.64.

In Figure 7a, in addition to the value of φ, we plot dark
curves separating SAM and SLM regions. These curves
have been calculated looking for couples (α, ν) that equal
the envelope wave function amplitude in z = 0 and z = π

2κ ,
and correspond to φ = ±π

4 (cf. Eq. (19)).
Below the gap, Figure 7a shows that regions of SAM

dominate: especially, as the frequency closes with the gap,
the SLM regions are reduced. This result is also coherent
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Fig. 8. (Color online) SAM/SLM character χ as defined in
equation (20). A black curve delimits regions of positive and
negative χ. Parameters corresponding to the SL described in
Section 2.4 have been used.

with Figure 7b: for 0.5807 THz, the slope of φ as a function
of α in the vicinity of α = 3/4− γ/2 � 0.39 is very steep,
and would be steeper for a frequency closer to the gap.
Above the gap, the same conclusions apply: SAM regions
dominate the phase space.

3.2.4 SAM/SLM character

In order to summarize the results of the two previous sec-
tions, let us define a “SAM/SLM character” as:

χ = ln
[
urms(0)/urms

( π

2κ

)]
(20)

which is positive for a SLM and negative for a SAM. The
highest |χ|, the more pronounced is the SAM or SLM char-
acter of the mode. χ is plotted as a function of the fre-
quency ν and the reduced dephasing α of the SL in Fig-
ure 8. It is clear that the more pronounced SAM or SLM
(highest |χ|) are localized close to the gap, and that SAM
dominate the phase space.

3.2.5 Numerical study

To check our analytical predictions based on the SHA, we
numerically integrate the differential equation (3) using
a 7th-order Runge-Kutta integrator around the 2nd band
gap: we thus take into account all harmonics of the inverse
square sound speed. We choose here to represent two dif-
ferent cases closed to the remarkable modes we point out
above: p2 real positive for α = α2 = 3/4 − γ/2 ≈ 0.39
and p2 real negative for α = α1 = 1/2 − γ/2 ≈ 0.14.
In both cases, we compute solutions of equation (3) for
0.5807 THz and 0.6182 THz (0.5 beating contrast) with
free boundary conditions at the surface, i.e. u(0) = 1 and

du/dz(0) = 0; these numerical results are plotted in Fig-
ure 9. For p2 real positive (α = α2), we clearly observe a
SAM above the gap and a SLM below, whereas for p2 real
negative (α = α1), it is the contrary. With respect to the
SAM or SLM character, the numerical results thus fully
agree with our analytical analysis.

Figure 9 not only validates our calculations and ap-
proximations, it also confirms that the parametric reso-
nance analogy is fruitful to get the main physics of wave
propagation near band gaps in semi-infinite SL. However,
please note that numerical values of the contrasts C and
the envelope wavelengths measured in Figure 9 differ from
the ones predicted by equations (B.4) and (10). We at-
tribute these discrepancies to the SHA. Indeed, the SHA
allows the prediction of the width of the 2nd band gap
with an error of the order of |p1|2. Thus, the gap edges
predicted by the parametric oscillator analogy slightly dif-
fer from the one calculated from the exact transfer matrix
method (or by a direct integration of Eq. (3)). Due to the
almost horizontal dispersion diagram curve near the gap
edges, a small variation of frequency ω may induce a non
negligible variation in κ. Consequently, while the paramet-
ric oscillator analogy gets the main physics and especially
allows us to find out the parameters to see SLM, it re-
mains based on the SHA and thus, some care should be
taken in order to predict quantitative values, which will
better be derived from an exact approach like the transfer
matrix method.

4 Observation of SLM and SAM

We now address the problem of the experimental observ-
ability of NBPM. Trigo et al. [18] claim they have shown
the existence of SAM using pump-probe experiments cou-
pled to a theoretical analysis. In the following, we would
like to focus in detail on the optical activity of NBPM.

Colvard et al. [12] addressed the phonon-electron
coupling in GaAs/AlAs SL. The reduced dephasing of
phonons compared to layers of the SL is a key param-
eter for the strength of this coupling. They showed in
agreement with experiments that, out of electronic reso-
nance conditions, B2 phonons, in phase with layers of the
SL, do not create a strong electron-phonon coupling and
are thus not observable. On the contrary, A1 phonons, in
quadrature phase with layers of the SL do create a strong
electron-phonon coupling and are thus observable. These
conclusions rely on the electron-phonon coupling mech-
anism: the deformation potential (in GaAs/AlAs SL),
whose Hamiltonian is proportional to the divergence of
vibration modes.

In the case of NBPM around the band gap at ω(2)
BG,

their wave vector G±κ is slightly different from the prim-
itive vector G of the reciprocal lattice, thus their relative
phase compared to layers of the SL slowly shifts with z
as ±κz. Thus, such modes could be in phase or out of
phase with the SL depending on the position z in the SL
(as long as κ �= 0). However, though the envelope ampli-
tude is varying, we can assume that these modes will be
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Fig. 9. Numerical solutions of equation (3) for 0.5807 THz (below the gap) and 0.6182 THz (above the gap) with free boundary
conditions u(0) = 1 and du/dz(0) = 0. The reduced dephasing α of the SL compared to the surface z = 0 is respectively
α = α2 = 3/4 − γ/2 � 0.39 for (a) and (b) and α = α1 = 1/2 − γ/2 � 0.14 for (c) and (d). For each graph, we plot both a
zoom and overall picture of the mode. The overall picture exhibits the Loving or Avoiding character of the modes. The zoom
allows the discussion on the phases of the mode compared to the SL when the amplitude of the mode is maximum. Dashed
parts represent AlAs layers and blank ones GaAs layers.

observable if they have the A1 symmetry (i.e. in quadra-
ture phase with the layers of the SL) at their maximum
envelope amplitude.

As demonstrated in Appendix C for the remarkable
cases of Section 3.2.1, we find that, out of resonance con-
ditions, observable modes are found below the gap inde-
pendently on their SAM or SLM nature.

To check our latter analytical prediction, numeri-
cal solutions of equation (3) below (0.5807 THz) and
above (0.6182 THz) the gap obtained in Section 3.2.5
are compared to the SL in regions of maximum envelope
amplitude. Figure 9 reports these results. In both cases
p2 real positive (α = 3/4 − γ/2) and p2 real negative
(α = 1/2 − γ/2), phonons above the gap are in phase
with the layers of the SL at their maximum amplitude en-
velope in agreement with our prediction: they are hardly
observable. On the contrary, phonons below the gap are in
quadrature with the layers of the SL and will thus induce
a strong electron-phonon coupling in agreement with our
predictions.

5 Discussion

We have shown that the envelope amplitude of near
Brillouin zone center acoustical phonon in the vicinity of
the surface can be maximum (SLM) or minimum (SAM)
depending on the reduced dephasing of the SL relative to
the surface. For a given function 1

c2 (z), equation (1) is a
second order differential equation whose solutions are en-
tirely determined by two boundary conditions we can re-
duce to the definition of (u(0), du/dz(0)). Knowing one so-
lution u1(z), u2(z) = u1(z+zref) is also a solution for the
boundary conditions u2(0) = u1(zref ) and du2/dz(0) =
du1/dz(zref ), and for the function 1

c2 (z + zref ). Conse-
quently, if SAM exists, a judicious choice of zref allows to
obtain SLM: one just needs to cut the SL at zref chosen in
the region where the envelope of the SAM is maximum.
Assuming free boundary conditions, this choice imposes
the reduced dephasing α of the SL, which precisely cor-
responds to our study. Reciprocally, choosing α = 0, the
choice imposes the boundary conditions.
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We now address two discrepancies between our results
and related works in the literature.

The first one concerns conclusions of reference [26]: “in
the physically important cases of a free and a clamped in-
terface, we emphasize, surface repulsion is a property of all
modes with wavevectors close to those of dispersion gaps”,
suggesting that only SAM exist. We have shown in this
work, that in the case of free boundary conditions, both
SAM and SLM exist. The discrepancy between our results
and the cited work may be explained since calculations of
reference [26] only consider a SL with a reduced dephas-
ing α = 0 relative to the SL surface. In the precise case
of free boundary conditions and α = 0, our results agree
with conclusions of reference [26].

The second discrepancy concerns claims of refer-
ence [18]: NBPM “have a tendency to avoid the bound-
aries, irrespective of the boundary conditions” suggesting
that, whatever the boundary conditions, only SAM ex-
ist (note that this work [18] also only considers SL with
α = 0). If we have restricted our study to the case of
free boundary conditions, of course, the study could eas-
ily be extended to the case of any boundary conditions.
Actually, as suggested in the beginning of the section, we
found that fixing the reduced dephasing α = 0 and vary-
ing the boundary conditions produce the same qualitative
conclusions as fixing the boundary conditions and vary-
ing the relative phase: both SAM and SLM exists and
SAM regions dominate the phase space. We have chosen
not to discuss in detail such effects of changing boundary
conditions because the case of free boundary conditions
is experimentally the most relevant. To illustrate the cor-
rectness of our analysis, and in disagreement with state-
ments of reference [18], the reader can easily check the
existence of a SLM by direct integration of equation (3)
using the following parameters: u(0) = 1.5 and du

dz (0) = 1
and ν = 0.5807 THz and the SL defined in Section 2.4
with α = 0 (the same as Ref. [18]).

Let’s now consider experimental observations of SAM
or SLM. Reference [18] claims to observe SAM under the
gap using a SL with α = 0 and free boundary conditions.
This observation agrees with our analysis: from Figure 8,
NBPM under the gap for α = 0 are SAM and from Sec-
tion 4 they are likely to be observable.

In Section 4, we show that both SAM and SLM could
in principle be observable. We would like to address here
technical problems associated with the observation of
SLM. Indeed, in Figure 8, we show that SAM regions
dominate the phase space. Thus, a high precision on the
value of α is needed if one wants to observe SLM. This
might prove challenging for SL growth. As an illustration,
let’s consider the precision on the thickness of layers pro-
duced by molecular beam epitaxy, which is about 2 mono-
layers (≈0.5 nm). In the case of the SL already studied
(AlAs(2.35 nm)/GaAs(5.9 nm)) a precision of ±0.25 nm
on the value of the dephasing τ corresponds to a pre-
cision of ±0.03 on the value of α. If α exactly matches
3/4− γ/2 = 0.39, the NBPM is a SLM for any value of ν
below the gap. However, if α lays in the range 0.39±0.03,
The frequency ν has to be lower than 0.583 THz to get

SLM. Thus, because of the lack of precision on the layers
thicknesses, observations of SLM would require a protocol
that selects NBPM with a low enough frequency (below
the boundary SAM/SLM shown in Fig. 8): we think such
a selection may be achieved by the presence of a substrate.
Indeed, the length of the SL and the presence of a sub-
strate is an important parameter that tunes the lifetime
of observable phonons created in the SL by the excitation
laser. A precise study of these effects will be detailed in a
forthcoming publication.

6 Conclusion

We have shown using a fruitful analogy with the paramet-
ric oscillator that NBPM could either avoid (SAM) or love
the surface (SLM) depending on the relative phase of the
SL compared to the sample surface. Moreover, we have
shown that both modes should in principle be observable
using judicious experimental parameters. Whereas SAM
have already been observed, experimental evidences of
SLM will be difficult in view of the technical challenge
to achieve a convenient SL. Despite these difficulties, we
think such experiments are possible choosing an appro-
priate SL length. The experimental distinction between
SAM and SLM may be demonstrated using pump-probe
experiments with different penetrating length lasers.

Finally, we would like to underline that our study of
sound waves in SL could be generalised to any kind of
waves. So that electronic [27,28] or electromagnetic [19]
wave functions in electronic SL or Bragg mirrors also show
a Surface Avoiding or Surface Loving character depending
on the surface termination of the SL.

Appendix A: Resolution of equation (6)
in a semi-infinite SL

Finding the solutions (9a) and (9b) amounts to diagonalize
the square matrix in equation (8). The eigenvalues are
±iκ, defined by 10. Since we are focusing to the outside of
the gap, κ is real and we may choose it positive (Changing
κ by −κ is equivalent to permute constant A(B)+ and
A(B)− in Eq. (9)):

κ =
k2
0

2G

√

δ2 − |p2|2, (A.1)

recalling δ = k2
0−G2

k2
0

from equation (11). |p2| denotes the
magnitude of p2: |p2| =

√
p2p̄2. After diagonalization,

the following relations are found between the constants
in equation (9):

B+ = −ζe−iψA+ (A.2a)

A− = −ζe+iψB− (A.2b)

where ψ is the argument of p2, so that p2 = |p2| eiψ and

ζ =
δ

|p2| −
√(

δ

|p2|
)2

− 1. (A.3)
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Let us now impose a real amplitude u0 at the surface,
u(0) = u0. This boundary condition reads

A+

(
1 − ζe−iψ

)
+B−

(
1 − ζe+iψ

)
= u0. (A.4)

We may try B− = A+, since their respective factors are
complex conjugates, and u0 is real. Please note that chang-
ing u0 to be complex would merely amount to dephase the
vibration in time. Then, introducing A0 (real) and φ so

that A+ = A0e
i

(
ψ
2 +φ

)

, the displacement reads

u(z) = A0

{
cos

[
(G+ κ)z + ψ

2 + φ
]
−

ζ cos
[
(G− κ)z + ψ

2 − φ
]}

(A.5)

with

A0 =
u0

2
(
cos

(
ψ
2 + φ

)
− ζ cos

(
ψ
2 − φ

)) . (A.6)

The boundary condition du/dz(0) = 0 yields to the fol-
lowing expression which allows the determination of the
integration constant φ:

tan φ = − tan(ψ/2)
(G+ κ) − ζ(G− κ)
(G+ κ) + ζ(G− κ)

. (A.7)

Note that equation (A.7) defines φ modulo π. However,
u(z) is fully defined in equation (15) by defining the couple
A0 and φ. We thus use the convention to choose A0 > 0
in equation (A.6): φ is now defined modulo 2π. Note that
close to the gap, this procedure always yields a value of φ
in ]−π

2 ,
π
2 ].

We found one solution (A.5) of this second order dif-
ferential equation. This is the only one satisfying the given
free boundary conditions. Finally, equation (A.5) can be
written in the alternative form 15, more convenient for the
interpretation.

Appendix B: Envelope equation

As seen in Figure 9, the displacement consist in a fast
oscillating term at wave vector G, modulated by a lower
wave vector envelope. One way to define this envelope is
to take the square of u in equation (15)

u2 (z) = 4A2
0

{
(1 − ζ)2 cos2

(
Gz + ψ

2

)
cos2 (κz + φ)

+ (1 + ζ)2 sin2
(
Gz + ψ

2

)
sin2 (κz + φ)

− (1 − ζ) (1 + ζ) 2 cos
(
Gz + ψ

2

)
sin

(
Gz + ψ

2

)

× cos (κz + φ) sin (κz + φ)
}

(B.1)

and then to average on the characteristic time of the fast
oscillating term. So, we define:

u2
rms(z) =

G

2π

∫ z+ 2π
G

z− 2π
G

u2(z′)dz′. (B.2)

This procedure amounts to take a local mean, around ev-
ery position z, on a 2π

G range. In equation (B.1), using
κ � G, the cos2(Gz + ψ

2 ) and sin2(Gz + ψ
2 ) yield 1

2 and
the last term vanishes. Finally, we end up with a local
“root mean square” positive amplitude urms

u2
rms(z) � 2A2

0

[
1 + ζ2 − 2ζ cos 2(κz + φ)

]
(B.3)

which will also be called the envelope of the displacement
in this paper. The contrast of the beatings in u may be
defined as

C =
max(urms) − min(urms)
max(urms) + min(urms)

(B.4)

which is equal to ζ above the gap and to 1
−ζ below the

gap, since max(urms) =
√

2A0(1 + |ζ|) and min(urms) =√
2A0 |1 − |ζ||, with ζ ∈]0, 1] above the gap and ζ ∈] −

∞,−1] below the gap.

Appendix C: Observation of SAM or SLM:
analytical study

To check if NBPM around band gap at ω(2)
BG have the

A1 symmetry at their maximum envelope amplitude, we
examine their relative phase compared to the layers of the
SL. So that, whereas in Section 3.2 we were interested in
the phase φ of the envelope compared to the SL surface, we
now get interested in the phase ψ

2 of the quickly oscillating
function (at spatial frequency G) compared to the layers
of the SL.

Equation (15) gives the analytical expression of
NBPM. The layers of the SL can be described using the
inverse square sound speed as shown in Figure 4. How-
ever, only the first harmonic (at G) of the SL is necessary
to get a picture of the layers of the SL: the coefficient p1

defined by equation (13d) determines the phase of layers
of the SL.

We thus, only have to compare the relative phase of
the phonons (at their maximum envelope amplitude) to
the one of the first harmonic of the inverse square sound
speed.

We now examine the two remarkable cases mentioned
in Section 3.2.1.

Let us start with the cases p2 real and positive ob-
tained for α = 3/4 − γ/2 or α = 5/4 − γ/2: the SAM
mode, above the gap, varies like sin(Gz) sin(κz), whereas
the SLM, below the gap, varies like cos(Gz) cos(κz). From
equations (13b) and (13c), we can see that c1 = 0 and
d1 �= 0 which implies that the first harmonic of the SL
varies like sin(Gz). Thus, it turns out that the SAM
mode is in phase with the SL at its maximum amplitude
(kz = π/2[π])): the electron-phonon coupling is thus weak
which makes it hardly observable. On the contrary the
SLM mode is in quadrature with the SL at its maximum
amplitude (kz = 0[π])): the electron-phonon coupling is
high and so, this SLM mode is likely to be observable.

A similar analysis for the cases p2 real and negative
(α = 1/2− γ/2 or α = 3/2− γ/2) leads to the conclusion
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that in that case, the SLM mode, above the gap, will be
hardly observable whereas the SAM mode just below the
gap, is likely to be observable.

Hence, in both remarkable cases, observable modes are
found below the gap.
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