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Abstract. The physics of the spatial propagation of monochromatic waves in periodic media is related
to the temporal evolution of the parametric oscillators. We transpose the possibility that a parametric
pendulum oscillates in the vicinity of its unstable equilibrium position to the case of monochromatic waves
in a lossless unidimensional periodic medium. We develop this concept, that can formally applies to any
kind of waves, to the case of longitudinal elastic wave. Our analysis yields us to study the propagation of
monochromatic waves in a periodic structure involving two main periods. We evidence a class of phonons
we refer to as periodic interface modes that propagate in these structures. These modes are similar to
the optical Tamm states exhibited in photonic crystals. Our analysis is based on both a formal and an
analytical approach. The application of the concept to the case of phonons in an experimentally realizable
structure is given. We finally show how to control the frequencies of these phonons from the engineering
of the periodic structure.

Waves in periodic media have focused the interest of many
scientists and have found numerous applications (mirrors,
filters, etc.) in different branches of physics: phonons (elas-
tic waves) in crystalline solids or in phononic crystals [1],
electromagnetic (EM) waves in photonic crystals [2], elec-
tron wave functions in crystalline solids [3] or electronic
superlattices [4]. An essential property of the waves prop-
agation in these structures is the existence of band gaps
(BG) in which the amplitude of a monochromatic wave
exponentially varies, hence corresponding to non-physical
states in infinite media. Outside of these gaps, monochro-
matic waves are spatially (pseudo-) periodic.

In phononic crystals, derived from the existence of
Rayleigh and Stoneley waves associated to a surface or
an interface, an unconventional type of acoustic waves
has been exhibited in superlattices (SL) [5–7] or related
structures [8]. Provided a component of the wave vector
parallel to the SL interfaces (in-plane wave vector) differ-
ent from zero, the spatial dependence perpendicular to the
interfaces of the wave function (displacement) is a pseudo-
periodic function displaying a succession of growing and
decreasing exponentials in each layer of the SL, the ampli-
tude of the wave function being bounded. The wave func-
tion of this unconventional type of acoustic waves thus
present a high amplitude in the vicinity of some interfaces
and are thus periodically localized at these interfaces.

Concerning optical phonons, an analogous unconven-
tional wave has been evidenced, namely interface opti-
cal phonons. Interface optical phonons with a wave vec-
tor perpendicular to the SL interfaces (zero in-plane wave
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vector) have been experimentally evidenced in a GaAs-
AlAs SL by Raman scattering [9]. Their frequencies fall
in the BG of the SL, and their wave functions display a
succession of growing and decreasing exponentials in each
subset of the SL [10].

Some different though related unconventional waves
have been exhibited in photonic crystals: their wave func-
tions are composed of an oscillating function whose am-
plitude displays a succession of growing and decreasing
exponentials in a photonic crystal. Contrary to the uncon-
ventional phonons derived from the Rayleigh and Stoneley
waves, these modes can propagate in a periodic unidi-
mensional structure with a zero in-plane wave vector. A
coupled resonator optical wave guide (CROW) [11,12], a
photonic crystal presenting some periodic impurities (the
resonator or cavities) can support the propagation of such
modes. If the size of the cavities is judiciously chosen, some
waves falling in the BG of the photonic crystal can prop-
agate through the CROW with a zero in-plane wave vec-
tor: the cavities are thus coupled through oscillating waves
with evanescent amplitudes. Structures made of two con-
jugated SLs [13] and of two different semi-infinite photonic
crystals with a common interface and with overlapping
BG [14] have also been shown to support the propagation
of these unconventional modes. In this latter case, these
unconventional modes are called optical Tamm states. The
amplitudes of these modes are evanescent in each photonic
crystal. Optical Tamm states have been experimentally
evidenced [15,16] in finite structures.

In this manuscript, a general physical interpreta-
tion of these latter unconventional modes is given.
The equivalence [17] between the physics of the spatial
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Fig. 1. (Color online) Sketch of the elementary cell of a SSL
(unit cell “ABABABABCDCDCD”). The dark green and red
background colors correspond to the SL1 (unit cell of the type
“AB”) and SL2 (unit cell of the type “CD”) regions: dark
green, dashed dark green, red and dashed red regions, respec-
tively represent A,B,C,D materials.

propagation of monochromatic waves in a lossless unidi-
mensional infinite periodic (LUIP) medium and the one
of the temporal evolution of the parametric oscillator in
classical mechanics is exploited to evidence the uncon-
ventional waves analogous to optical Tamm states: these
waves can be considered as the transposition of the strik-
ing possibility for an oscillator to oscillate in the vicinity of
an unstable equilibrium position using a parametric exci-
tation (for instance in the inverted pendulum experiment).
Since, to our knowledge, such modes analogous to optical
Tamm states, have never been reported in the case of elas-
tic waves propagating in an unidimensional structure, the
propagation of elastic waves (with a zero in-plane wave
vector) in SL will be considered here.

The transposition of the inverted pendulum experi-
ment to the case of phonons in an unidimensional struc-
ture, yields us to consider the propagation of a monochro-
matic wave in a periodic structure involving two main
(judiciously chosen) periods: a SL whose unit cell (e.g. a
unit cell of the type “ABABABABCDCDCD”) contains
two finite periodic subsets (e.g. “ABABABAB” and “CD-
CDCD”) having some overlapping regions of their BG is
an example of such medium (see also [18]). In the follow-
ing, such SL will be referred as a supersuperlattice (SSL).
The sketch of the elementary unit cell of a SSL is depicted
in Figure 1. The unconventional type of monochromatic
waves, referred as periodic interface modes (PIM) in this
work will be studied and described: they propagate in a
SSL while their frequencies belong to an overlapping re-
gion of the BG of each subset (e.g. “ABABABAB” and
“CDCDCD”). The amplitude of such waves exponentially
varies in each subset in an opposite way, but exhibits a
sinusoidal envelope in the whole structure.

In Section 1, the equivalence between the spatial prop-
agation of phonons in a LUIP medium and the temporal
evolution of a parametric oscillator is detailed. Transpos-
ing the possibility for a parametric oscillator to oscillate
in the vicinity of an unstable equilibrium position, some
heuristic arguments why to consider the propagation of
waves in a periodic structure involving two main periods
are provided. In Section 2, using a formal expression of
the wave equation, an analytic framework that yields an
approximated analytical expression of the wave function
for the PIM is given. In Section 3, the preceding analysis
is applied to the case of the propagation of phonons in
achievable structures. Finally, Section 4 is devoted to the
discussion.

1 Heuristic arguments

1.1 The wave propagation in a LUIP medium
and the parametric oscillator

As exploited recently [17], the physics of the propagation
of a monochromatic wave in a LUIP medium is equiv-
alent to that of the temporal evolution of a paramet-
ric oscillator. In the following, all considered waves are
monochromatic.

Let us consider the propagation of an elastic wave in
a LUIP medium (direction z, period λs). In addition, the
case of a longitudinal elastic wave with normal incidence
(zero in-plane wave vector) is considered. Using the linear
elasticity theory [19], the displacement field associated to
an elastic wave of angular frequency ω writes U(z, t) =
U(z, ω)eiωtz and is solution of the Navier equation:

C(z)
d2U

dz2
(z, ω)+

dC

dz
(z)

dU

dz
(z, ω)+ρ(z)ω2U(z, ω) = 0, (1)

where C(z) and ρ(z) are the elastic coefficient czzzz (or
C33 using the Voigt notation) and the mass density, re-
spectively. Setting U(z, ω) = Q(z, ω)u(z, ω) with Q(z, ω)
satisfying 2C dQ

dz + dC
dz Q = 0, u(z, ω) is solution of:

d2u

dz2
(z, ω) + p(z, ω)u(z, ω) = 0, (2)

where p(z, ω) = ρω2

C − 1
2C

d2C
dz2 + 1

4C2 [dC
dz ]2.

In a LUIP medium, the function p(z, ω) in equation (2)
is real and periodic (period λs and wave number ks = 2π

λs
).

Equation (2) is a Hill equation. The qualitative behaviour
of the solutions of equation (2) can be deduced from a
peculiar case of the Hill equation, the Mathieu equation:
equation (2) reduces to a Mathieu equation by considering
a sinusoidal variation of p(z, ω) or limiting the Fourier
series of p(z, ω):

p(z, ω) ≈ p0(ω) + p1(ω) cos(ksz) (3)

=⇒ d2u

dz̃2
(z̃) + [η̃0(ω) + 2α̃(ω) cos(2z̃)]u(z̃) = 0, (4)
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Fig. 2. (Color online) (a) Sketch of a parametric pendulum,
(b) phase diagram of equation (6). (Pseudo-) periodic and ex-
ponential solutions are in blue and dashed regions. A vertical
red line points up η̃0 = 0.

where η̃0(ω) = 4p0(ω)
k2

s
is a positive quantity, α̃(ω) = 2p1(ω)

k2
s

,

z̃ = ksz
2 and where the dependence of u on ω has been

dropped for clarity reasons. Equation (4) is a Mathieu
equation. In the following, all dimensionless quantities (or
in reduced unit) will have an over-tilde.

Provided that one interprets the space variable z̃ in
equation (4) as a time variable, equation (4) for the spatial
propagation of waves is similar to the temporal evolution
equation of a parametric oscillator. A common example of
a parametric oscillator is a simple pendulum whose sus-
pension point has a vertical motion z = f(t), with f a
periodic function (angular frequency ωs): see Figure 2a.
The study of the stability of its fixed points θ0 yields the
following Hill equation for the deviation u = θ− θ0 with θ
the angle of the pendulum:

l
d2u

dt2
+ ε

[
g +

d2f(t)
dt2

]
u = 0, (5)

where l and g are, respectively, the length of the pendu-
lum and the standard gravity. The state of the pendulum
is characterized by u = (u, du

dt ). In equation (5), ε = 1 for
the study of the stable fixed point θ0 = 0 and ε = −1
for the unstable one θ0 = π. Equation (5) reduces to the
Mathieu equation when the parametric excitation is sinu-
soidal z = −z0 cos(ωst):

d2u

dt̃2
+

[
η̃0 + 2α̃ cos(2t̃)

]
u = 0, (6)

with t̃ = ωst
2 , η̃0 = ε

4ω2
0

ω2
s

and α̃ = ε2z0/l and where ω2
0 =

g/l, ωs and z0 are, respectively, the pendulum eigen an-
gular frequency, the excitation angular frequency and am-
plitude. η̃0 is positive around the fixed point θ0 = 0 and
negative around θ0 = π.

Provided the change z̃ ↔ t̃ (ks ↔ ωs), equations (4)
and (6) are equivalent: their solutions are thus also
equivalent.

Using a time translation t̃ → t̃ + π
2 , the study of the

solutions of equation (6) can be reduced to the case α̃ > 0.
Depending on η̃0 and α̃, the solutions of equation (6)
are either (pseudo-) periodic or exponential. The (pseudo-)

periodic solutions correspond to a (pseudo-) periodic vari-
ation of the angle of the pendulum (solutions of Eq. (6))
and to propagative modes in the case of waves (solutions
of Eq. (4)). The exponential solutions are oscillating func-
tions with an exponentially varying amplitude: they cor-
respond to the parametric resonances for the parametric
pendulum and to modes in the BG for the waves.

Mathematically, using the Floquet theory, the
(pseudo-) periodic and exponential solutions are associ-
ated to eigenvalues of Rπ

0 of module respectively equal to
and different from 1 [20], with Rt̃

t̃0
the propagator of equa-

tion (6): u(t̃) = Rt̃
t̃0

u(t̃0). The phase diagram of equa-
tion (6), obtained by numerically calculating the propa-
gator of equation (6) is reported in Figure 2b.

For the parametric pendulum, both η̃0 > 0 (stabil-
ity of the fixed point θ0 = 0) and η̃0 < 0 (stability of
the fixed point θ0 = π) regions are relevant. Remarkably,
in Figure 2b, the parametric pendulum evidences some
(pseudo-) periodic solutions in the η̃0 < 0 region i.e. in the
vicinity of θ0 = π, corresponding to the inverted pendu-
lum experiment [21]. Since η̃0 > 0 in equation (4), such
mathematical (pseudo-) periodic solutions in the η̃0 < 0
region are not physically relevant in the case of wave.

Note that allowing a non zero in-plane wave vector,
surface (Rayleigh) or interface (Stoneley) elastic waves can
display a negative value η̃0 in the direction perpendicular
to the SL interfaces: the study of such a case has been
already reported in the literature [5,8]. Besides, the same
derivation can be performed in the case of electromagnetic
waves: η̃0 is then proportional to the relative dielectric
permittivity. For a metal below the plasma frequency, the
(real part of the) relative dielectric permittivity is negative
resulting in a negative value of η̃0 in equation (6). How-
ever, the dielectric permittivity of a metal is a complex
quantity whose imaginary part is related to the absorp-
tion and cannot be neglected. The case of complex values
of η̃0 is out of the scope of this study.

In the following, the study is limited to the case of
elastic waves with normal incidence for which η̃0 > 0. As
a consequence, the following study will be easily transpos-
able to any kind of waves.

1.2 Transposing the inverted pendulum case
to the wave propagation in LUIP media

Despite the previous analysis, it is possible to design
a LUIP medium where some waves, analogous to the
(pseudo-) periodic solutions of the parametric pendulum
in the phase space η̃0 < 0 can propagate.

Using the Floquet-Bloch theorem, the displacement
field of a wave in a LUIP medium involving one main pe-
riodicity (a SL of the type “ABABABAB” or a medium
in which the wave propagation is described by Eq. (4)), is
the product of a periodic function times an exponentially
(in the BG) or sinusoidally (outside the BG) varying am-
plitude A(z̃). Assuming some reasonable approximations
detailed in Section 2, this amplitude A(z̃) is solution of
a wave equation in an hypothetical homogeneous medium
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with an effective η̃eff
0 :

d2A

dz̃2
(z̃) + η̃eff

0 A(z̃) = 0, (7)

η̃eff
0 =

(η̃0 − 1)2 − α̃ ¯̃α
4

. (8)

When equation (7) is derived from equation (4), η̃eff
0 is a

function of η̃0 and α̃ (η̃eff
0 = κ̃2 in Eq. (14) with β̃ = 0) and

its expression is given by equation (8). η̃eff
0 is negative for

a wave falling in a BG (corresponding to exponential so-
lutions of Eq. (4)), positive otherwise ((pseudo-) periodic
solutions) in agreement with the respective exponential
and sinusoidal variations of A(z̃).

We hence surmise that A(z̃) will be the solution of a
Hill (or Mathieu) equation if η̃eff

0 is spatially modulated.
In such a case, some propagative solutions A(z̃) are ex-
pected in the η̃eff

0 < 0 region i.e. an inverted pendulum
stabilization mechanism for the amplitude A(z̃).

Different designs of periodic medium can provide a
modulation of η̃eff

0 . The simplest way that we have thought
about to modulate η̃eff

0 and that we will study here is to
use a periodic medium composed of two finite periodic
subsets: for instance a SSL (see Fig. 1), a SL whose unit
cell (length Le) (e.g. a unit cell of the type “ABABABAB-
CDCDCD”) contains two finite periodic subsets, the two
subsets (periods L1 and L2) (e.g. “ABABABAB” and
“CDCDCD”) having some overlapping regions of their
BG. In addition, the relation Le � L1, L2 is imposed to
ensure the separation of scales.

For a wave falling in the overlapping region of the BG,
η̃eff
0 is negative in each subset but is spatially modulated

since different values of η̃eff
0 are associated with each sub-

set. By judiciously choosing the size Le of the SSL, the
spatial modulation of η̃eff

0 may induce some propagative
solutions for the amplitude A(z̃): these solutions would
then correspond to the inverted pendulum solutions. The
displacement field of the wave, the product of a periodic
function times the amplitude A(z̃), would then also be
(pseudo-) periodic and thus associated to a propagative
wave. In the following, such modes are shown to exist and
these unconventional type of waves will be referred as pe-
riodic interface modes (PIM).

2 Analytical study in a continuous medium

2.1 Amplitude equation

In this section, assuming some reasonable approximations,
an analytical expression of the displacement field of a PIM
propagating in a SSL is derived. To this aim, the func-
tion p(z, ω) for a SSL in equation (2), the wave equation
in a LUIP medium is first explicit. The Fourier series of
the function p(z, ω) is then restricted to its main relevant
harmonics to be able to analytically solve this equation.

Let us consider a SSL whose unit cell is of the
type “ABABABABCDCDCD”, with the separation of

ρω/C
2

ρω/C
2

Subset CDCDSubset ABAB Subset ABAB

Subset CDCDSubset ABAB Subset ABAB

Case 1

Case 2

Le

Ls

Fig. 3. (Color online) Sketch of the values of ρω2

C
(equal to

p(z, ω) in non singular point) in the SSL in the two limiting

cases: case 1: the amplitudes of the modulation of ρω2

C
are the

same in both subsets while the average values differ; case 2: re-
ports the opposite situation. Horizontal red dashed lines report

the average values of ρω2

C
in each subset. Vertical dashed lines

separate each subset “ABABABAB” and “CDCDCD”. For
simplicity, the represented case corresponds to Ls = L1 = L2.

scales Le � L1, L2. Provided the limitation of the Fourier
series of p(z, ω), a wave equation of the type equation (4)
with values of η̃0, α̃ and ks specific to each subset can be
associated to each subset “ABABABAB” or “CDCDCD”.
At the first order in α̃ [17], the BG of the two subsets
can overlap if they are due to a periodic spatial varia-
tion of p(z, ω) at the same wave number ks = 2π

Ls
with

Ls = L1
m = L2

n with m, n ∈ N: the two Fourier trans-
forms of p(z, ω) associated to each subset should have
some peaks at commensurable frequencies. Here, for sim-
plicity, the relation Ls = L1 = L2 is assumed.

Since in each subset, η̃eff
0 (given by Eq. (8)) depends on

both η̃0 (proportional to the average value p(z, ω)) and α̃
(proportional to the amplitude of the variation of p(z, ω)),
there are two (theoretical) limiting cases that yield a spa-
tial modulation of η̃eff

0 :

– case 1: η̃0 is spatially modulated and α̃ is kept constant
– case 2: η̃0 is constant and α̃ is spatially modulated.

Figure 3 reports a sketch of the values of ρω2

C (equal
to p(z, ω) in a non singular point) in the SSL for both
cases. In case 1, the amplitudes of the modulation of ρω2

C
are the same in both subsets while the average values dif-
fer; case 2 reports the opposite situation. These two lim-
iting cases can of course be mixed. Nevertheless, for clar-
ity reasons, these cases will be separately treated in the
following.

To analytically study the PIM, the Fourier series of
the function p(z, ω) is restricted to its main relevant
harmonics.

– Case 1: η̃0 is spatially modulated on a length scale Le

and α̃, coefficient of the harmonic at the wave number
ks = 2π

Ls
is kept constant. Since η̃0(ω) = 4p0(ω)

k2
s

in
equation (4), a modulation of η̃0 on a length scale Le
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involves an additional harmonic at wave number ke =
2π
Le

in the expression of p(z, ω):

p(z, ω) ≈
[
p0(ω) + p2(ω) cos(kez)

]
+ p1(ω) cos(ksz),

(9)
where the quantity [p0(ω) + p2(ω) cos(kez)] has re-
placed the term p0(ω) in equation (3). Injecting equa-
tion (9) in equation (2), u(z̃) is solution of the following
modified Mathieu equation:

d2u

dz̃2
+

[
η̃0 + α̃ei2z̃ + β̃eik̃e z̃ + c.c.

]
u = 0, (10)

where η̃0 = 4p0(ω)
k2

s
> 0, α̃ = 2p1(ω)

k2
s

, β̃ = 2p2(ω)
k2

s
,

k̃e = 2ke

ks
, z̃ = ksz

2 and where complex quantities have
been introduced (c.c. means complex conjugates).

– Case 2: η̃0 is constant and α̃ coefficient of the har-
monic at the wave number ks = 2π

Ls
is modulated on

a length scale Le. Hence, the main relevant harmonics
describing p(z, ω) are:

p(z, ω) ≈ p0(ω) +
[
p1(ω) + p2(ω) cos(kez)

]
cos(ksz),

(11)
where the quantity [p1(ω) + p2(ω) cos(kez)] has re-
placed p1(ω) in equation (3). Substituting equa-
tion (11) in equation (2), the following modified
Mathieu equation derives:

d2u

dz̃2
+

[
η̃0+α̃ei2z̃+

β̃

2
ei(2−k̃e)z̃+

β̃

2
ei(2+̃ke)z̃+c.c.

]
u = 0,

(12)
where η̃0 = 4p0(ω)

k2
s

> 0, α̃ = 2p1(ω)
k2

s
, β̃ = 2p2(ω)

k2
s

, k̃e =
2ke

ks
, z̃ = ksz

2 and where complex quantities have been
introduced.

The PIM, solutions of equations (10) and (12) are now
analysed. Note that a general study of equation (10) can
be found in references [22,23]. Here, this study examines
if the parametric excitations at wave vector k̃e (Eq. (10))
and at wave vectors 2 ± k̃e (Eq. (12)) can create some
(pseudo-) periodic solutions inside the BG induced by the
excitation e±i2z̃ (with β̃ = 0). A wave in the first BG
created by the excitation e±i2z̃ i.e. (η̃0(ω)−1)2 < α̃ ¯̃α (this
condition derives from Eq. (8)) is considered and again,
the separation of space scales k̃e � 1 is assumed. The
coordinate system of equations (10) and (12) is changed
to define the function A(z̃):

u(z̃) = A(z̃)eiz̃ + c.c., (13)

where A(z̃), the amplitude of u(z̃) is assumed to slowly
vary on the length scale 1 (4π

ks
in real units).

– Case 1: introducing equation (13) in equation (10),
neglecting the second derivative of A(z̃) [24] and
using k̃e � 1, the identification of the Fourier

components at wave vector 1 and −1, and straight-
forward calculations yield to the following equation
for A(z̃):

d2A

dz̃2
+ κ̃2A +

[
η̃0 − 1

2
β̃eik̃ez̃ +

β̃2e2ik̃e z̃

4
+ c.c.

]
A = 0,

(14)

with κ̃2 =
(η̃0 − 1)2 − α̃ ¯̃α + 2β̃

¯̃
β

4
. (15)

Equation (14) is a Hill equation i.e. the equation of a
parametric oscillator and governs the amplitude A(z̃)
of the displacement field.

– Case 2: introducing equation (13) in equation (12),
A(z̃) is solution of the following equation:

d2A

dz̃2
+κ̃2A+

[
α̃

¯̃
β+ ¯̃αβ̃

8
eik̃e z̃+

β̃
¯̃
βe2ik̃e z̃

16
+ c.c.

]
A = 0,

(16)

with κ̃2 =
(η̃0 − 1)2 − α̃ ¯̃α − β̃

¯̃
β
2

4
. (17)

Equation (16) is again a Hill equation. In addition,
though the coefficients differ, the harmonics involved in
the parametric excitation in equation (16) are the same
as the ones in equation (14): solutions of equations (14)
and (16) are thus qualitatively equivalent.

Physically, these mathematical similarities evidence that,
as suggested previously, the amplitudes A(z̃) have the
same qualitative behaviours in both case 1 and case 2,
since both cases formally yield to the modulation of ηeff

0 .
Let us first discuss the solutions of equation (14) (or

Eq. (16)) in the specific case β̃ = 0. As mentioned in
the heuristic argument, the amplitude A(z̃) is solution of
a wave equation in a hypothetical homogeneous medium
with an effective η̃eff

0 = κ̃2: equations (7) and (8) are, re-
spectively, equivalent to equations (14) and (16) and to
equations (15) and (17) in the case β̃ = 0. If κ̃2 > 0 (or
equivalently (η̃0(ω) − 1)2 > α̃ ¯̃α), the solutions A(z̃) are
sinusoidal: u(z̃) equation (13) is then a (pseudo-) peri-
odic function involving harmonics at wave vector 1± κ̃. If
η̃eff
0 = κ̃2 < 0 (or (η̃0(ω) − 1)2 < α̃ ¯̃α), the solutions A(z̃)

exponentially vary: the wave falls in the BG created by the
excitation e±i2z̃. These results corroborate the hypothesis
of the second paragraph in Section 1.2.

2.2 Analytical expression of the amplitude A(z̃)

In this section, an approximated analytical expression of
the amplitude A(z̃) is derived solving equation (14) in
the general case β̃ 	= 0. Solutions of equation (16) can be
straightforwardly deduced from this analysis.

In the general case β̃ 	= 0, equation (14) is similar to a
Mathieu equation but involves a periodic excitation com-
posed of a fundamental and one harmonic. Its solutions
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are similar to the solutions of the Mathieu equation. No-
ticeably, some periodic solutions exist in the κ̃2 < 0 half-
space phase: this result can be shown numerically, if 2

k̃e
is

a rational number1 by calculating the eigenvalues of the
propagator of equation (14) (as performed to get Fig. 2b)
or analytically provided |κ̃| � k̃e. This latter possibility
is detailed below.

Similarly to the resolution of the motion of a particle in
a fast oscillating field [25], the solutions of equation (14)
write: A(z̃) = S(z̃) + ξ(z̃), where ξ is a periodic func-
tion varying on the length-scale π

k̃e
, while S(z̃) varies on

a much longer length scale 2π
k̃γ

(see below). Introducing
this decomposition in equation (14) and identifying the
functions varying on each length scale yields:

ξ(z̃) =

[
η̃0 − 1
2k̃2

e

β̃eik̃ez̃+
β̃2e2ik̃e z̃

16k̃2
e

+c.c.

]
S(z̃), (18)

d2S

dz̃2
+ k̃2

γS = 0, (19)

with k̃2
γ = κ̃2 +

(η̃0 − 1)2

2k̃2
e

β̃
¯̃
β +

β̃2 ¯̃
β2

32k̃2
e

. (20)

Hence, even if κ̃2 < 0, k̃2
γ can be positive provided

(η̃0−1)2

2k̃2
e

β̃ ¯̃β + β̃2 ¯̃β2

32k̃2
e

> |κ̃2|: some periodic solutions to equa-

tion (14) exist in the κ̃2 < 0 half-space phase: these solu-
tions precisely correspond to the PIM, the transposition
of the inverted pendulum case to the propagation of wave
in a LUIP medium. These results demonstrate the conjec-
ture made in the third paragraph of Section 1.2. In such
case (κ̃2 < 0 and k̃2

γ > 0), the solution of equation (10)
writes:

u(z̃) = A(z̃)eiz̃ + Ā(z̃)eiz̃ + c.c., (21)

A(z̃) = A0e
ikγ z̃

[
1 +

η̃0 − 1
2k̃2

e

β̃eik̃ez̃ +
β̃2e2ik̃ez̃

16k̃2
e

+ c.c.

]
,

(22)

where A0 is defined from the initial conditions. Equa-
tion (21) describes an unconventional type of wave, the
PIM. The displacement field u(z̃) of PIM equation (21) is
essentially an oscillating function at wave vector 1 (short
length scale) in reduced space unit ( π

Ls
in real space unit)

whose amplitude A(z̃) is spatially modulated. The func-
tion A(z̃) is a periodic function with wave vectors k̃e (cor-
responding to an intermediate length scale) and 2k̃e whose
amplitude A0e

ikγ z̃ is modulated at the wave vector k̃γ

(corresponding to a large length scale). Note that, from
the heuristic arguments (Sect. 1), the amplitude A(z̃) was
expected to have some exponential increasing or decreas-
ing (on the intermediate length scale), which is not the

1 The Floquet theory applies to equation (10) if the para-

metric excitation α̃ei2z̃ + β̃eik̃ez̃ + c.c. is a periodic function
i.e. the ratio 2

k̃e
of the excitation wave vectors is a rational

number.

case from equation (22). However, the above analytical
calculations, based on a perturbation theory at the first
order, only provide the main harmonics of the Fourier
transform of u(z̃) and elude the non linear terms. As a con-
sequence, the expression of u(z̃) equation (21) as well as
the expressions of κ̃ equation (15) and of k̃γ equation (20)
are only approximated expressions.

The preceding analytical analysis can be related to the
Floquet theory mentioned in Section 1.1. The Floquet the-
ory applies to equation (10) if the parametric excitation
α̃ei2z̃ + β̃eik̃e z̃ + c.c. is a periodic function (let us call L̃ its
period) i.e if 2

k̃e
is a rational number: if 2

k̃e
= p

q is an irre-

ducible fraction ((p, q) ∈ N)) L̃ = q 2π
k̃e

= pπ. In such case,
equation (21) can be rewritten evidencing a Bloch wave
function φBloch(z̃) verifying φBloch(z̃ + L̃) = φBloch(z̃):

u(z̃) = eik̃γ z̃φBloch(z̃) + c.c., (23)

φBloch(z̃) = G(z̃)eiz̃ + Ḡ(z̃)eiz̃ + c.c., (24)

G(z̃) = A0

[
1 +

η̃0 − 1
2k̃2

e

β̃eik̃e z̃ +
β̃2e2ik̃e z̃

16k̃2
e

+ c.c.

]
.

From such an expression, one can show that the eigenval-
ues of the propagator of equation (10) write eik̃γ L̃.

To show the relevance, but also the limit of this an-
alytical derivation, the solution u(z̃) of equation (10) for
α̃ = ¯̃α = 0.1, β̃ = ¯̃β = 0.05, k̃e = 1

14 and η̃0 = 1.066
are examined as an example. On one hand, within these
values, (η̃0 − 1)2 < α̃ ¯̃α, κ̃2 < 0 and k2

γ > 0: the analytical
calculation predicts that this wave is in the BG created
by the harmonic at e±i2z̃, but is periodic due to the pres-
ence of the parametric excitation at wave vector k̃e. On the
other hand, equation (10) is numerically solved using stan-
dard numerical libraries2 and the result u(z̃) is reported
in Figure 4. Figure 4 represents a function that can be de-
scribed by equation (21). The function u(z̃) shows three
characteristic lengths λ̃s, λ̃e and λ̃γ defined on Figure 4.
λ̃s, the short length scale between two consecutive local
maxima of u(z̃) is about 2π in agreement with the analyti-
cal prediction. The distance λ̃e between two local maxima
of the amplitude of u(z̃), the intermediate length scale is
equal to 14λ̃s so that, 2π

λ̃e
= 1

14 = k̃e in agreement with
the analytical calculations. Finally, the values of the local
maxima of the amplitude of u(z̃) are modulated on a large
length scale λ̃γ , this length scale is expected to be 2π

k̃γ
from

the analytical calculations. If the values of λ̃s and λ̃e on
Figure 4 are in good agreement with the analytical calcu-
lations, the theoretical value derived from equation (20)
λ̃theo

γ = 204.4 significantly under-estimates the value of
λ̃γ ≈ 710 measured from Figure 4 (this latter one can
accurately be calculated from the eigenvalues of the prop-
agator of Eq. (10)): the non-linear terms and the different

2 A method based on the 4th order Merson’s method and the
1st order multi-stage method of up to and including 9 stages
with stability control is used.
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Fig. 4. Function u(z̃) solution of equation (10) for α̃ = 0.1,
β̃ = 0.05, k̃e = 1

14
and η̃0 = 1.066 with initial conditions

u(0) = 1 and du
dz̃

(0) = 0. The vertical dashed lines reveal the

characteristic lengths of the variation of u(z̃): λ̃s, λ̃e and λ̃γ .

harmonics can not be neglected in order to obtain a quan-
titative result.

This analysis can be enriched by a Fourier analysis
of u(z̃). Figure 5 reports the Fourier transform FT(u)(k̃)
of the function u(z̃) for k̃ ∈ [0.5, 1.5]. The spectrum of u(z̃)
shows some wide features composed of many peaks around
k̃ = 2n + 1 with n ∈ N. Since the analytical expres-
sion (21) has neglected the non-linear terms and thus only
provides the harmonics around k̃ ≈ 1, Figure 5 only shows
the features around k̃ = 1. The discussion below focus on
the harmonics around k̃ ≈ 1. The values of k̃e and k̃γ can
be recovered from the differences of spatial frequencies
between the peaks around k̃ ≈ 1. As suggested by equa-
tion (21), the spectrum of u(z̃) is expected to show some
peaks at frequencies 1± k̃γ , 1± k̃e ± k̃γ and 1 ± 2k̃e ± k̃γ :
an example of the peaks to be considered in order to mea-
sure the values k̃e and k̃γ is reported in Figure 5. Nat-
urally, the values of k̃e and k̃γ measured from Figure 5
agree with the values λ̃e and λ̃γ measured in Figure 4
in the real space. Note that, due to the non-linear terms
and the different harmonics eluded in the analytical cal-
culations, Figure 5 shows some additional frequencies at
1±mk̃e ± k̃γ with m ∈ N.

Though a very rough estimate of k̃γ (or λ̃γ) and some
missing harmonics, the analytical derivation and equa-
tion (21) provide a relevant description of the PIM, the
unconventional type of waves that transposes the case of
the inverted pendulum to the wave.

3 Layered systems

Though theoretically relevant to study the PIM, equa-
tions (10) or (12) are hardly applicable for a realistic peri-
odic system: it is actually technically difficult to create a

0.6 0.8 1.0 1.2 1.4
k
~

1×10
-15

1×10
-10

1×10
-5

1×10
0

F
T

(u
)(

k~
)

2k
~

γ

k
~

e

Fig. 5. Fourier transform (semi-log plot) FT(u)(k̃) of the so-
lution of equation (10) for α̃ = 0.1, β̃ = 0.05, k̃e = 1

14
and

η̃0 = 1.066 with initial conditions u(0) = 1 and du
dz̃

(0) = 0. The
vertical dashed lines reveal some of the characteristic wave vec-
tors involved in the variation of u(z̃): k̃e and k̃γ .

material with a controlled gradient of the sound speed. For
these reasons, the systems based on layered structures ini-
tially mentioned in Section 1, more easily achievable in ex-
periments will be examined in this section. The propaga-
tion of elastic waves in a SSL is considered. To engineer a
SSL displaying some PIM, the two limiting cases sketched
in Figure 3 can been considered. The case 1 inevitably re-
quires the use of 3 or 4 different materials. While it seems
that the same rule applies for case 2, it is, however, possi-
ble to benefit from the presence of the several BG in each
subset to engineer a SSL displaying some PIM using only
two different materials. This latter case is examined in the
following. Technically, due to the generally different lat-
tice mismatch of materials, it is more challenging (though
not impossible) to create a (quasi-) perfect SSL based on
three or four materials than a one based on two materials.

3.1 Dispersion diagram and periodic interface modes

The propagation of elastic waves in a SSL (period Le) (see
Fig. 1) whose elementary unit cell is composed of 10 + x
periods of a SL referred as SL1 with x = 0.5 and 10 pe-
riods of another SL referred as SL2 is studied. The unit
cell of SL1 (period L1) is composed of 5.65 nm (10 mono-
layers (ML)) of GaAs and 2.26 nm (4ML) of AlAs SL,
while the one of SL2 (period L2) is composed of 11.3 nm
(20ML) of GaAs and 4.52 nm (8ML) of AlAs. The (001)
crystalline directions of the GaAs and AlAs crystal are
perpendicular to the layers for both SL1 and SL2. The
period of SL1 is thus L1 = 7.91 nm, while the one
of SL2 is L2 = 15.82 nm. Finally the period of the SSL
is Le = 241.26 nm. The SL1 and SL2 parameters have
been chosen so that both SL1 and SL2 have an overlap-
ping BG. The period Le of the SSL has been chosen so that

http://www.epj.org
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Fig. 6. (Color online) Dispersion diagram of the SSL (black),
SL1 (cyan) and SL2 (red) between 0–0.6 THz (a) and 0.28–
0.34 THz (b), the x-axis reports the Bloch wave vector normal-
ized by kf = π

Ξ
with Ξ = Le(SSL), L1(SL1) or L2(SL2). The

y-axis reports the frequency ν = ω
2π

. The blue curve and orange
cross point up a PIM band and the PIM mode at ν = 0.3142
THz (see Fig. 7).

some PIM appear in the overlapping region of the SL1
and SL2 BG. The overlapping region that will be con-
sidered in the following, corresponds to the first BG of
SL1 and to the second one of SL2. In SL1, the first BG
is essentially created by the first harmonic of p(z, ω) at
ks = 2π

L1
(i.e. λs = L1), while in SL2, the second BG is

essentially created by the second harmonic of p(z, ω) at
ks = 2 2π

L2
= 2π

L1
[17]. This configuration corresponds to

the case 2 mentioned in Section 2 i.e. a spatial modula-
tion of the coefficient of the harmonic at ks and the same
average value of p(z, ω) in each subset.

Considering wave vectors with normal incidence, Fig-
ure 6 reports the dispersion diagrams of the SSL, SL1
and SL2 and, Figure 6b a zoom in the frequency
range 0.28 THz–0.34 THz, corresponding to an over-
lapping region of the SL1 and SL2 BG. These dis-
persion diagrams are calculated from the transfer ma-
trix method [26], a representation of the propagator of
equation (1) in these systems. The following numeric
values have been used for the calculation: ρGaAS =
5317.6 Kgm−3, ρAlAS = 3760 Kgm−3, CGaAS =
118.8 GPa and CAlAS = 119.2 GPa.

In Figures 6a and 6b, the multiple foldings and the
mini-BG created by the periodicity Le of the SSL appear.
More interestingly, the SSL phase diagram shows some
phonons (blue curve in Fig. 6) in the overlapping region of
the SL1 and SL2 BG. As shown below, these phonons are
PIM. Figure 7 reports the displacement field U(z, ω), solu-
tion of equation (1) in the SSL for ν = ω

2π = 0.3142 THz,
a PIM identified by an orange cross in Figure 6b. Though
in the BG of both SL1 and SL2, this solution describes
a (pseudo-) periodic mode that propagates in the LUIP
medium. U(z, ω) is an oscillating function and the distance

Fig. 7. (Color online) Displacement fields U(z, ω) solutions
of equation (1) in the SSL for ν = ω

2π
= 0.3142 THz be-

tween 0–7000 nm (a) and 500–2000 nm (b). The dark green
and red background colors identify the SL1 and SL2 regions.
An orange curve, a guide to the eye emphasizes the oscillations
at the Bloch wave vector.

between two consecutive local maxima is about 15.95 nm
(short length scale), in good agreement with the value of
2Ls = 2L1 = L2. This distance has been deduced from the
distance between three consecutive maxima around z =
840. Since U(z, ω) involves many harmonics as it will be
shown below, the apparent period of these oscillations on
the short length scale can slightly vary depending on the
position where they are measured. The amplitude of these
oscillations are alternatively exponentially increasing and
decreasing in SL1 and SL2: the distance between two con-
secutive local maxima of the amplitude is the period of
the SSL, Le = 241.26 nm, the intermediate length scale.
Finally, the maxima of this amplitude are modulated by a
sinusoidal envelope on a large length scale. From the dis-
tance between three consecutive maxima of this envelope,
the period of this oscillation is deduced to be 5730 nm.
An orange curve, a guide to the eye emphasizes these os-
cillations on Figure 7.

Due to the weak difference between the AlAs and GaAs
stiffnesses [27], u(z, ω) ≈ U(z, ω), and p(z, ω) ≈ ω2ρ(z)

C
in equation (2). The displacement field U(z, ω) is simi-
lar to the displacement field shown in Figure 4 of Sec-
tion 2 though the ratios between the different length scales
(short/intermediate and intermediate/large length scales)
differ.

The displacement field U(z, ω) can be described by
equation (21). The oscillation on the short length scale
with a period of about 15.95 nm corresponds to the ei±z̃

(in reduced unit or e±i πz
λs in real space unit) terms in equa-

tion (21): the period actually corresponds to 2λs = 2L1 =
L2 = 15.82 nm. The intermediate length scale is related to
the exponential variation of the wave amplitude and cor-
responds to the e±ik̃e z̃ (in reduced unit or e±ikez in real
space unit) terms in equation (21).
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Fig. 8. Fourier transform (semi-log plot) of the displacement
field FT(U)(k, ω) in the SSL for ν = ω

2π
= 0.3142 THz as

a function of the wave vector. The vertical dashed lines reveal
some of the characteristic wave vectors involved in the variation
of U(z, ω): k̃e and k̃γ .

Finally, the variation on the large length scale, 5730 nm
from Figure 7 corresponds to the e±ik̃γ z̃ (in reduced
unit or e±ikγz in real space unit with k̃γ = 2kγ

ks
)

terms in equation (21). The value of this large length
scale can also be obtained from the Bloch wave vector
kγ = 0.0846kf = 0.001102 nm−1 (2π

kγ
= 5703 nm) of

the SSL mode at ν = ω
2π = 0.3012 THz (orange cross)

in the dispersion diagram Figure 6b: this value derives
from the eigenvalues of the transfer matrix. The weak dif-
ference (of the order of 0.4%) between the values obtained
from the direct measure of the period or from the Bloch
wave vector are related to numerical precisions.

The displacement field reported in Figure 7 can also
be considered in the Fourier space. Figure 8 reports
the Fourier transform FT(U)(k, ω) of the displacement
fields U(z, ω) as a function of the wave number k be-
tween 0.3 and 0.5 nm−1. The spectrum of the displace-
ment fields U(z, ω) is analogous to the one reported in Fig-
ure 5 and shows some wide features composed of numerous
peaks around the wave numbers k = 0.392(2n + 1) nm−1

with n ∈ N: similarly to the analyse performed in Sec-
tion 2, the feature around k = 0.392 nm−1 is examined
and the full spectrum is not represented in Figure 8.

The oscillation on the short length scale exhibited in
Figure 7b corresponds to the wide feature around the wave
number 0.392 nm−1 (wave number of the highest peak),
corresponding to a period 16.02 nm. Analysing Figure 8
with the help of equation (21) and Figure 5, the inter-
mediate and large length scales can be deduced from the
distances between the peaks of Figure 8. (i) On the inter-
mediate length scale, the distance between the two peaks
mentioned on Figure 8, ke = 2π

Le
= 0.026 nm−1 i.e. a pe-

riod of 241.66 nm, corresponds to the period Le of the
SSL. (ii) The large length scale deduces from the distance

Fig. 9. (Color online) Dispersion diagram of the SSL (black
and blue curves) between 0.28–0.34 THz as a function of x.
The BG of SL1 and SL2 are represented by the cyan+red and
red regions.

between two others peaks mentioned on Figure 8: k̃γ ≈
0.0011 nm−1, e.g. a period of 5710 nm in good agreement
with the results found in the real space. The difference
between the measures in real and Fourier space should be
regarded considering the uncertainty Δk = 1.5e−4 nm−1

in the Fourier space due the finite integration range used
in the calculation of the Fourier transform.

The wave reported in Figure 7 and its Fourier trans-
form Figure 8 are similar to the PIM evidenced in Sec-
tion 2 represented in Figure 4 and its Fourier transform
Figure 5. These similarities show the relevance of the an-
alytic analysis of Section 2. As a conclusion to this sec-
tion, the unconventional type of waves, the PIM has been
evidenced in experimentally achievable structures. These
PIM transpose the case of the inverted pendulum to the
case of elastic waves (with zero in-plane wave vector) in
a layered structure. These unconventional waves can rele-
vantly be described by analytical expression (21).

3.2 Control of the PIM frequencies

Beyond the existence of the PIM, it is possible to fully con-
trol their frequencies from the engineering of the SSL by
using a fractional number of the periods of SL1 or SL2 [7].
Some SSL formed by 10+x periods of SL1 and 10 periods
of SL2 with different x values between 0 to 1 are consid-
ered. Figure 9 reports the dispersion diagrams of these
SSL between 0.28–0.34 THz for x = 0, 0.2, 0.4, 0.6, 0.8
and 1. In each of these diagrams, the BG of SL1 and SL2
are represented using cyan+ red and red regions. In addi-
tion, a SSL frequency band is pointed out by distinguish-
ing it from the others by a blue curve in the dispersion
diagram. Figure 9 shows that this frequency band contin-
uously shifts from above to below the overlapping region
of the SL1 and SL2 BG while increasing x. Hence, for each
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value of x, all or part of the modes in this band are in the
overlapping regions of the SL1 and SL2 BG, and hence
correspond to some PIM. The frequencies of the PIM can
thus be tuned by judiciously choosing the unit cell struc-
ture and more precisely the value of x.

4 Discussion

As shown, the PIM are the transposition of the inverted
pendulum case to the propagation of elastic waves (with
a zero in-plane wave vector). The concept of this trans-
position, to use a periodic structure involving two main
(judiciously chosen) periods is general and can be applied
to any kind of waves (elastic, electromagnetic, etc.) as
soon as they are solutions of a wave equation: indeed, the
derivation done in Section 2 is not specialized to the case
of phonons. As already mentioned, some unconventional
waves analogous to PIM have already been evidenced in
different fields of the physics, though not interpreted as
the transposition of the inverted pendulum case: all the
examples below have already been cited in the introduc-
tion. The existence of interface optical phonons [9] in SLs
are related to PIM: the atomic potential, that mimics the
term e2iz̃ in equation (10) induces the BG between the
acoustic and optical phonons branches; the SL periodicity
corresponding to the term eik̃ez̃ in equation (10), creates
the parametric excitation that stabilizes some phonons in
this BG. The description of interface optical phonons in-
volves the coupling between EM waves and polar phonons
through a frequency-dependent dielectric constant that
accounts for the atomic potential: the theoretical descrip-
tion of these modes is thus essentially similar to the de-
scription of the amplitude A(z̃) in equation (14) where the
term κ̃2 would be proportional to a frequency-dependent
dielectric constant [10].

The propagation of wave in a CROW [11,12] can be de-
scribed in the framework reported in this manuscript: in-
deed, the periodicity of the photonic crystal induces a BG
that can be related to the term e2iz̃ in equation (10), and
the periodic presence of impurities (cavities) to the term
eik̃e z̃. This latter excitation, if judiciously chosen (partly
by choosing the size of the cavity) results in the appear-
ance of some propagative waves in the BG of the photonic
crystal.

Finally, as already mentioned, optical Tamm states are
equivalent to PIM. The SSL and the PIM, described in
the present work are equivalent to the photonic crystal
and optical Tamm state described in references [14–16].

5 Conclusion

As a conclusion, the propagation of waves in LUIP media
is closely related to the physics of the parametric oscil-
lator. The transposition of the inverse parametric pen-
dulum to the case of waves (with a zero in-plane wave
vector) exhibits an unconventional type of waves: the case

of phonons has been considered here evidencing the PIM.
A different approach [14–16] applied to the case of electro-
magnetic waves, has evidenced the optical Tamm states.
The PIM and optical Tamm states are qualitatively equiv-
alent. PIM have been theoretically described using a for-
malism derived from the parametric oscillator. Finally, a
realizable structure evidencing these PIM has been given.

Due to the highly localized nature of the displacement
field of PIM, the SSL are expected to be useful in the
investigation of non-linear effects or in the realization of
materials involving a high electron-phonon coupling [28].

Finally, the transposition of the inverse parametric
pendulum has been considered here in the case of elas-
tic waves in an unidimensional structure to exhibit the
PIM. Due to its generality, the transposition of the inverse
parametric pendulum to any kind of waves (spin, capillary
waves . . . ) can be considered. In addition, though we have
focussed on an unidimensional system, the generalization
of the described concept to two- and three-dimensional
devices is worth being considered.

The author thanks J. Morillo, M. Benoit, A. Ponchet and J.R.
Huntzinger for useful discussions.
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