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Recently, Grassberger [1997, Phys. Rev. E, 56, 3682] has presented a new algorithm (‘PERM’)
for simulating flexible polymer chains. This algorithm has been shown to have a good
efficiency and has been used in a wide class of systems. A drawback of this algorithm is that it
is static: it is therefore not suited for Markov-chain Monte Carlo simulations. Here, we present
a dynamic generalization of the PERM algorithm. For a specific example, we compare the
efficiency of DPERM to that of other Monte Carlo algorithms. In the case studied, we find
that DPERM is only marginally more efficient. However, this result may depend on the details
of the implementation.

1. Introduction

Numerical simulations of polymers are almost as old
as computer simulation itself. However, whereas the
Monte Carlo algorithm for simulating simple atomic
and molecular systems has not changed since its very
inception [1], polymer simulations remain a technical
challenge driving the development of novel Monte Carlo
algorithms. The main problem with polymer simulations
is that it is not easy to devise an algorithm that will
efficiently sample the space of possible polymer con-
formations. The problem is that the number of possible
conformations is astronomically large. For instance, for
polymers living on a simple cubic lattice, the number [2]
of allowed conformations scales approximately as 4:7n,
where n is the number of monomers in the chain. It
would clearly be desirable to achieve large conforma-
tional changes in a single Monte Carlo move. However,
for most existing MC schemes, the obtained conforma-
tions are not very relevant for the calculations of
average quantities, in particular for long polymers (see
e.g. [3]).

A very early Monte Carlo scheme to generate polymer
conformations is the one due to Rosenbluth and
Rosenbluth (RR) [4]. In the RR method, the sampling
of polymer conformations is biased in order to improve
the efficiency of the algorithm. The bias is corrected for
by introducing a conformation-dependent weight factor
such that the weighted average over all polymer confor-
mations will converge towards the correct Boltzmann
average. While the Rosenbluth method is much more

efficient than an algorithm that would generate polymer
conformations at random, it still becomes inefficient
when applied to long chains [5]. Grassberger [6] has
suggested adding two ingredients to the RR algorithm
to improve its efficiency: ‘pruning’ and ‘enrichment’. The
basic rationale behind pruning is that it is not useful to
spend much computer time on the generation of a
conformation that will hardly contribute to the weighted
average. Therefore, it is advantageous to discard
(‘prune’) such irrelevant conformations at an early
stage. The idea behind enrichment is to make multiple
copies of partially grown chains that have a large
statistical weight [6, 7] and to continue growing these
potentially relevant chains. The algorithm that combines
these two features is called the pruned-enriched
Rosenbluth method (PERM). The examples presented
by Grassberger and co-workers [8, 9] indicate that the
PERM approach can be very useful for estimating the
thermal equilibrium properties of long polymers.
Moreover, the method can be used to search for the
lowest-energy conformation (‘native state’) of simple
lattice proteins.

The main limitation of both the RR method and the
PERM algorithm is that they are ‘static’ Monte Carlo
schemes. In a static scheme, a large number of configu-
rations are created independently from each other: one
could understand it as picking points in phase space
independently from each other (see figure 1 (a)). In
contrast, in a ‘dynamic’ scheme, the system performs a
walk through phase space. At each step, a new point in
phase space is chosen and this trial move is then
accepted or rejected depending on the weight of both the*Author for correspondence. e-mail: frenkel@amolf.nl
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new and the old configuration (see figure 1 (b)). In
essence, this method is a Markov-chain Monte Carlo
scheme.

The static scheme can simulate single polymer chains
very efficiently, but it does become problematic when
studying systems consisting of many polymer chains: at
each step, one would have to simultaneously generate
the conformations of all the chains in the system. On the
other hand, in a dynamic scheme, one can conveniently
choose a new point in phase space by only changing one
chain at each step of the algorithm. An additional
advantage is that such a dynamic scheme can be easily
incorporated for other ensembles like the Gibbs
ensemble or grand-canonical ensemble, giving the
opportunity to compute phase equilibria efficiently.

As the RR method and the PERM method are
examples of a static scheme, they cannot handle many
chains efficiently. However, in the case of the RR
method there exists a dynamic generalization: the confi-
gurational-bias Monte Carlo (CBMC) [3]. In the CBMC
algorithm, the (Rosenbluth) weight of the individual
chains determines the probability of accepting or
rejecting a new polymer conformation generated by the
RR method.

The impressive results that Grassberger and
co-workers have reported for the static PERM algo-
rithm, inspired us to generalize the method to a dynamic
MC scheme (DPERM). The purpose of this paper is
to transform the original PERM algorithm into a
dynamical scheme (DPERM) and to investigate whether
the concept of PERM can improve existing dynamic
algorithms such as CBMC. In } 2, we describe the
algorithm. In } 3, we apply it to a simple toy model of
proteins due to Lau and Dill [10]. In } 4, we discuss ways
to select optimal values for the free parameters in the
algorithm. However, we find that, for the examples that
we studied, DPERM does not significantly outperform

existing methods such as CBMC. While this is, of
course, disappointing, the flexibility of DPERM makes
it likely that there will be cases where it will be the
method of choice.

2. Algorithm

Both PERM and DPERM algorithms are based on
the Rosenbluth scheme to generate the chains. We
therefore briefly recall the essential steps of that scheme.
For convenience, we only present the algorithm for
lattice models. A description of the off-lattice case can
be found in [3].

In the RR algorithm, a conformation of a chain of
length l is constructed as follows.

(1) The first monomer is inserted at a random lattice
position (n). We define its Rosenbluth weight as
w1 ¼ exp ð��uð1ÞðnÞÞ, where uð1ÞðnÞ is the energy
of the monomer.

(2) For subsequent segments, we consider all possi-
ble orientations of the next segment. The energy
of the jth trial position of the ith monomer of the
chain is denoted by uðiÞð jÞ. We select one of these
positions with a probability:

pðiÞðnÞ ¼
exp

�
� �uðiÞðnÞ

�
wi

, ð1Þ

where wi ¼
P�

j¼1 exp ½��uðiÞð jÞ� and � is the
number of trial positions. The energy uðiÞð jÞ
takes into account only the interactions of
monomer i with previous monomers in the
chain so that the total energy of the chain is:
UðnÞ ¼

Pl
i¼1 uðiÞðnÞ.

(3) Step 2 is repeated until the end of the chain is
reached.

The Rosenbluth weight of the chain is defined as:
WðchainÞ ¼

Ql
i¼1 wi.

This algorithm generates a given chain with a
probability exp ð��UðnÞÞ=WðchainÞ, where UðnÞ is the
energy of the chain. One can then calculate the
thermodynamic average hAi (following the Boltzmann
distribution) of an observable A by

hAi ¼

P
chain A 	WðchainÞP

chain WðchainÞ
: ð2Þ

The PERM algorithm uses the same algorithm to
generate the chains except that now pruning and
enrichment are added. These ingredients are imple-
mented as follows. At any step of the creation of a chain,
if the partial Rosenbluth weight Wð jÞ ¼

Qj
i¼1 wi of a

configuration is below a lower threshold W<ð jÞ, there is
a probability of 1

2
to terminate the generation of this

Figure 1. Schematic illustration in space phase of (a) a static
Monte Carlo method and (b) a dynamic Monte Carlo
method. In a static scheme, the points in phase space are
picked independently from each other, while in a dynamic
scheme, one performs an importance-weighted random
walk (see text). The solid line denotes the walk between
the accepted points, while the dashed line denotes the
rejected trial moves.

1676 N. Combe et al.
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conformation. If the conformation survives this pruning
step, its Rosenbluth weight is doubled W	ð jÞ ¼ 2 	 Wð jÞ.
Enrichment occurs when the partial Rosenbluth weight
of a conformation Wð jÞ ¼

Qj
i¼1 wi exceeds an upper

threshold W>ð jÞ. In that case, k copies of the partial
chain are generated, each with a weight W	ð jÞ ¼
Wð jÞ=k. All these copies subsequently grow indepen-
dently (subject to further pruning and enrichment). This
procedure is then repeated many times. Average proper-
ties can be computed using the re-weighted Rosenbluth
weight W	ð jÞ of all chains that were grown to
completion:

hAi ¼

P
j A 	W	ð jÞP

j W	ð jÞ
: ð3Þ

The value of the average is independent of the choice of
the upper and lower thresholds if the sum is infinite.
However, the rate of convergence of the average could
strongly depend on these thresholds.

The DPERM algorithm is the dynamic generalization
of the PERM algorithm. As in the CBMC algorithm, we
bias the acceptance of trial conformations to recover a
correct Boltzmann sampling of chain conformations.

Thus, starting from an old configuration, we create a
trial conformation and calculate the probability to
generate it. Starting from the condition for detailed
balance, we then derive the expression for the prob-
ability to accept or reject a new trial conformation. The
generation of the chains as such follows the PERM
scheme. Below, we describe the method for lattice
polymers. However, as in the case for CBMC [3], all
steps generalize directly to off-lattice polymers

As we use the Rosenbluth method to generate chains,
the probability to grow a particular conformation is

PgenðchainÞ ¼
Yl

i¼1

exp
�
� �uðiÞðnÞ

�
wi

: ð4Þ

In addition, every time the re-weighted Rosenbluth
partial weight W	ð jÞ of the chain drops below the lower
threshold W<ð jÞ, the chain has a probability 1=2 of
being deleted.y Let us assume that this happens m times.
Then, the total probability to generate a particular con-
formation is

PgenðchainÞ ¼
1

2m

Yl

i¼1

exp ½��uðiÞðnÞ�

wi
ð5Þ

and the re-weighted Rosenbluth weight of such a chain
would be:

W	ðchain newÞ ¼ 2m 	Wðchain newÞ ð6Þ

with Wðchain newÞ ¼
Yl

i¼1

wi: ð7Þ

Whenever the Rosenbluth partial weight exceeds the
upper threshold, k copies of the chain are created with
the Rosenbluth weight W	ð jÞ ¼ Wð jÞ=k, which leads to
the creation of a set of chains: this is a deterministic
procedure. At every stage during the growth of the
chain, others chains will branch off. The probability to
grow the entire family of chains that is generated in one
DPERM move can be written as

Pgenðchain newÞ 	Pgenðrest newÞ, ð8Þ

where Pgenðrest newÞ describes the product of the
probabilities involved in generating all the other pieces
of chains that branch off from the main chain. If we now
call p the number of times the Rosenbluth weight
exceeds the upper threshold during the generation of the
given trial configuration, the probability to generate this
particular chain is

Pgenðchain newÞ ¼ kp
Yl

i¼1

exp
�
� �uðiÞðnÞ

�
wi

ð9Þ

and its re-weighted Rosenbluth weight is

W	ðchain newÞ ¼
1

kp
Wðchain newÞ: ð10Þ

Here k is the number of copies that are created each time
the Rosenbluth weight exceeds the upper threshold.
In equation (9), the first term of the right-hand side
describes the usual probability to generate a given chain
following the Rosenbluth method. The factor kp comes
from the fact that the new chain could be any of the
chains in the set so that the probability to generate a
given chain is multiplied by this term. We also deduce
equation (10) from the fact that, each time we make
some copies, the Rosenbluth weight is divided by k.

If we now also take into account the possibility that
the chain can be pruned, then equation (9) becomes

Pgenðchain newÞ ¼
kp

2m

Yl

i¼1

exp ½��uðiÞðnÞ�

wi

¼
kp

2m

exp ½�UðnÞ�

Wðchain newÞ
: ð11ÞyWe have chosen a probability of 0.5 to prune, but one can

modify easily this value.

Dynamic pruned-enriched Rosenbluth method 1677
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Thus equation (10) becomes

W	ðchain newÞ ¼
2m

kp
Wðchain newÞ: ð12Þ

Note that equation (11) and equation (12) respectively
reduce to equation (5) and equation (6) in the absence of
enrichment (p ¼ 0) and to equation (9) and equation
(10) in the absence of pruning (m ¼ 0).

We now choose to select the new trial chain from the
set of chains created by the DPERM move with a
probability given by

Pchoose new ¼ W	ðchain newÞ=WtotalðnewÞ, ð13Þ

where W	ðchain newÞ is the re-weighted Rosenbluth
weight mentioned in equation (12) and Wtotal is the sum
of all such weights

WtotalðnewÞ ¼
X
set

W	
chain: ð14Þ

Equation (13) implies that we are most likely to choose
the best chain (the one with the largest re-weighted
Rosenbluth weight) of the set as the next Monte Carlo
trial conformation.

Assuming that we start from an old configuration
denoted by the subscript ‘old’, we generate a new
configuration following the scheme described above and
we accept this move with the following acceptance rule:

acc ðold! newÞ ¼min 1,
WtotalðnewÞ

WtotalðoldÞ

� �
: ð15Þ

To calculate WtotalðoldÞ, one has to ‘retrace’ the old
chain: the chain is first clear and reconstructed following
the procedure described above to determine its weight.
This is exactly analogous to what is done in the
configurational-bias Monte Carlo scheme.

A proof of this scheme is obtained using the super-
detailed balance condition [3]: detailed balance is obeyed
if the probability flow �ð½old, setold� ! ½new, setnew�Þ from
the old configuration with its set of chains to new one
with its set is equal to the reverse flow �ð½new, setnew� !
½old, setold�Þ. One can calculate both flows:

�ð½old, setold� !½new, setnew�Þ ¼

PBoltzmannðoldÞ 	Pgenðchain newÞ

	Pgenðrest newÞ 	Pgenðrest oldÞ

	Pchoose new 	 acc ðold! newÞ, ð16Þ

where PBoltzmannðoldÞ is the probability to find the system
in the old state following the Boltzmann distribution.

Writing the super-detailed balance condition:

�ð½old, setold� !½new, setnew�Þ ¼

�ð½new, setnew� ! ½old, setold�Þ: ð17Þ

Pgenðrest newÞ and Pgenðrest oldÞ appear on both sides of
equation (17), and therefore these terms drop. Using
equations (11) and (13), one can then deduce:

acc ðold! newÞ

acc ðnew! oldÞ
¼

WtotalðnewÞ

WtotalðoldÞ
, ð18Þ

which is fulfilled by our criteria of equation (15).
The algorithm described above allows us to perform

dynamic Monte Carlo simulations using both enrich-
ment and pruning. In the original static PERM algo-
rithm of Grassberger, the upper and lower thresholds, as
well as the number of copies, could be adjusted on the
fly. This flexibility was useful to avoid the generation of
very large sets of chains, especially at low temperature
where the variations in partial weights are huge. As
DPERM is a Markov-chain Monte Carlo algorithm,
changing the threshold on the fly would break detailed
balance. Hence, the number of copies, the upper and
lower thresholds should all be fixed before the beginning
of the simulation. To select suitable values for these
parameters, it is useful to perform a short CBMC simu-
lation before performing the DPERM simulation. In } 4
we discuss how best to choose these parameters.

In the next part, we apply the DPERM method to the
simulation of a toy model of proteins. The main aim of
this example is that the DPERM method reproduces the
results obtained by other dynamic MC schemes, such as
CBMC.

3. Toy model of proteins

We apply our algorithm to a toy model of proteins,
namely the HP model [10–13]. The folding of proteins is
believed to be essentially due to hydrophobic interac-
tions. In the HP model, proteins are modelled as a linear
chain of n amino acids. Each amino acid can be of two
types: hydrophobic (H) or polar (P). A conformation is
represented by a self-avoiding walk on a three-dimen-
sional cubic lattice. Moreover, hydrophobic amino acids
that are neighbours on the lattice, but not adjacent
along the sequence attract each other with a binding
energy "HH ¼ " < 0. We assume there is no interaction
between any other couple of amino acids: "HP ¼ 0 and
"PP ¼ 0. The properties of this model system only depend
on the dimensionless parameter "	 ¼ "=kbT where kb is
the Boltzmann constant and T the temperature. We use
a chain made of 48 amino acids and use the following
sequence:

H6PH2P6HP2H4PHPH5P4HP3H2P6H2:

1678 N. Combe et al.
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For a small value of j"	j, only a few HH bonds are
found and the chain is in a coil state. When increasing
the value of j"	j, the average number of HH bonds
increases and we observe a globular state. For a given
value of "	, one can calculate the probability of having a
given number of HH bonds. To check the results of the
DPERM algorithm, we compare the histogram of the
HH bonds obtained with the DPERM algorithm with
the one generated using a CBMC algorithm, see figure 2.
We have checked that histograms do not depend on the
choice of the lower or upper thresholds—however, the
acceptance rate does.

Figure 2 illustrates that the results obtained with the
DPERM algorithm are, apart from statistical errors,
identical to those obtained using the CBMC algorithm.
We have not studied this model at even lower tem-
peratures because it is becoming increasingly difficult to
obtain good statistics. Moreover, the fluctuations in the
Rosenbluth weight become so large that the size of the
sets created during successive Monte Carlo steps also
fluctuates wildly—in some cases, we ended up with sets
containing more than a thousand chains. We have also
calculated the average end-to-end distance of the chain
as a function of "	: figure 3 shows these results.

Both figures 2 and 3 show that the DPERM algorithm
yields the same results as CBMC. In the next section, we
discuss how to optimize the efficiency of the algorithm.

4. Choice of the thresholds and efficiency

The choice of the different thresholds strongly affects
the efficiency of the algorithm. Indeed, if the lower
thresholds are too high, then almost every created chain
will be pruned, and much CPU time will be wasted on

the generation of chains that do not survive anyway. On
the other hand, if the upper thresholds are too low, most
chains that are generated will be enriched and the
average size of the set of chains created at each Monte
Carlo move will become far too large, again wasting a
lot of CPU time.

In the description of the PERM algorithm,
Grassberger pointed out that it is desirable to have
pruning and enrichment more or less in balance. For the
DPERM algorithm, this implies that it would be
optimal if, on average, a DPERM trial move generates
a single chain.

Pruning is useful if only those chains that are deleted
would anyway have stood little chance of being accepted
as a trial conformation. A good way to determine the
pruning threshold is to perform a short CBMC
simulation in which we construct a histogram of the
partial weight of all chains that have been grown to a
given length m. Separately, we can collect a histogram of
the partial Rosenbluth weights at length m of only those
chains that were accepted at the end of the trial move.
The pruning threshold should be chosen such that
potentially successful chains will not be deleted.
Figure 4 (a) shows an example of these histograms for
m¼ 30. These histograms were obtained from CBMC
simulations with a value of "	 ¼ �1:7. The fact that the
two histograms are different illustrates the fact that it
makes sense to perform pruning: there is a clear
correlation between the partial weight of a chain at
m¼ 30 and its chance of being accepted at the end of the
growth process. Moreover, the separation between the
two histograms becomes more pronounced with
decreasing temperature and with increasing position in
the chain. This allows us to estimate how to apply
pruning in such a way that the overall acceptance rate of
the Monte Carlo simulation is not negatively affected. In
practice, we fix the pruning threshold at such that all

Figure 2. Histogram of the HH bonds for the HP model
calculated with both DPERM (square) and CBMC
(circle) algorithms for different values of " 	. For
" 	 ¼ �0:2, the pruning rate is about 10% and the
enriching rate about 7%. For " 	 ¼ �0:9, the pruning
rate is about 17% and the enriching rate about 7%. For
" 	 ¼ �1:4, the pruning rate is about 0.2% and the
enriching rate about 5%.

Figure 3. Average end-to-end distance calculated as a
function of " 	 for both CBMC (circle) and PERM
(square) algorithms. The error bars are mentioned but are
smaller than the symbols at high temperature.

Dynamic pruned-enriched Rosenbluth method 1679
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‘good’ chains survive. Figure 4 (b) shows a comparison
between histograms using CBMC and DPERM with the
pruning threshold fixed as described above. This
simulation was done in the absence of enrichment. The
effect of pruning is clearly seen and in this case does not
affect the acceptance rate of the Monte Carlo simula-
tion. Looking at the average position in the chain where
the pruning occurs, we find that it occurs at about half
of the chain in our case of a 48 monomer chain.
Additionally this pruning occurs with a rate of order
	pruning ¼ 10% for this value of "	: 	pruning is the number
of pruned chains divided by the total number of chains
we have tried to create. So one can easily calculate the
CPU time gained by pruning. We define the relative
efficiency 
 of DPERM compared to CBMC as the ratio
of the CPU time spent by a CBMC algorithm to
generate a set of Naccept chains with the Boltzmann
distribution (i.e. to have Naccept chains accepted in the

Monte Carlo simulation) divided by the CPU time spent
by the DPERM to generate the same ensemble. Calling
� the average CPU time spent to add one monomer in
the chain, a CBMC algorithm spends a CPU time:

�CBMC ¼ Ntrial 	 l 	 �, ð19Þ

where Ntrial is the total number of trials that have been
performed and l is the length of the chain. In the case of
DPERM, the CPU time spent is

�PERM ¼ Ntrialð1� 	pruningÞl��Ntrial	pruninglcut�, ð20Þ

where lcut is the average position where chains are cut,
and we use the same value of Ntrial because the definition
of the lower threshold does not affect the acceptance
rate 	accept ¼ Naccept=Ntrial. So the efficiency 
 can be
written as


 ¼
1

1� 	pruning½1� ðlcut=l Þ�
: ð21Þ

From the above analysis it follows that 
 is never less
than one: pruning can only speed up the simulation. But
unfortunately, its effect is not very large. In the present
case (assuming 	pruning  10% and lcut=l  1=2), we
estimate 
  1:05. Such an improvement in efficiency is
hardly significant. From equation (21), increasing the
pruning rate would increase the efficiency, but one has
to remember that this equation is only valid if pruning
does not affect the acceptance rate. One could argue that
increasing a little bit the pruning thresholds would allow
us to prune a lot of chains without affecting too much
the acceptance rate (see figure 4 (b)): still, this would not
lead to a significant increase in the efficiency, since even
with a pruning rate of about 20%, the efficiency would
still be 4 1:1.

The situation cannot be improved by enrichment of
chains with a partial weight in excess of a certain
threshold value. Grassberger demonstrated that enrich-
ment is a useful device for finding the native state.
However, in the case of DPERM, it is very time
consuming yet does not significantly improve the
acceptance rate: little is gained by enriching ‘good’
chains as these are anyway likely to be accepted in the
importance sampling process. A similar case happens
for the parallel version of the CBMC algorithm [14]
in which multiple chains are grown simultaneously and
only one is chosen with a certain probability.

The crucial difference between the dynamic and static
PERM algorithms is that, in the latter scheme, all the
chains which are created by enrichment are used in the
evaluation of thermodynamic quantities. Therefore,
the average CPU time to generate one chain decreases
with the number of copies made. In contrast, in the
DPERM algorithm, only one chain of the set will be

Figure 4. Normalized histogram of the partial weight at the
position 30 of the chain. "	 ¼ �1:7. In (a) the histograms
are obtained from a CBMC simulation. The curve with
circles represents the histogram of the partial weight of
created chains, and the solid line, the one for the accepted
chains. In (b) we use a lower threshold indicated by
the vertical solid line. The solid line with circles and the
dashed line with squares respectively represent the
histograms of the created chains using DPERM and
CBMC. The two noisy dashed and solid curves that are
almost superimposed respectively represent the histo-
grams of the accepted chains using CBMC and DPERM.
The error bars on these histograms could be obtained
knowing that their statistics follow a Poisson distribution.

1680 N. Combe et al.
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kept for a trial Monte Carlo move. Nevertheless, since
we are likely to choose the best chain of the set for this
trial move, one could expect to improve significantly the
Monte Carlo acceptance rate by enriching.

Defining computational gain in the same way as we
did above, we can estimate the effect of enrichment on
efficiency. The CPU time spent by a CBMC simulation is

�CBMC ¼ Ncbmc
trial 	 l 	 �: ð22Þ

With the DPERM algorithm, the CPU time spent is

�CBMC ¼ Nperm
trial 	 l 	 �þNperm

trial 	enrichk ðl � lenrichÞ �, ð23Þ

where 	enrich is the enrichment rate, lenrich is the average
position where enrichment occurs and k is the average
size of sets that are generated. The efficiency can then be
written as


 ¼
Ncbmc

trial

Nperm
trial

1

1þ 	enrichk ½1þ ðlenrich=l Þ�
ð24Þ

¼
	permaccept

	cbmc
accept

1

1þ 	enrichk ½1þ ðlenrich=l Þ�
: ð25Þ

Since the enrichment should, on average, balance
pruning, the product 	enrich 	 k should be of the same
order as the pruning rate 	pruning. In the present case,
that means that 	enrich 	 k  10% and moreover
lenrich=l 5 0:5. For such small enrichment rates, we
never found a value for the ratio 	permaccept=	

cbmc
accept which

was significantly higher than 1. A very optimistic
estimate of the efficiency would lead to a value of 1.1.
In practice, using enrichment, we have never obtained
an efficiency higher than one.

In summary, in the examples of the DPERM scheme
that we studied, we found that enrichment does not
increase the computational efficiency.

5. Conclusion

Motivated by the efficiency of the PERM algorithm,
we have modified this algorithm into a dynamic
Markov-chain Monte Carlo algorithm.

This new method can be applied everywhere algo-
rithms like CBMC apply: we have applied it to linear
chains in this paper, but it could also be applied to
polymers with more complex architecture. For the cases
that we studied, this algorithm does not present a
significant improvement in efficiency compared to
existing dynamic algorithms, such as CBMC and we
do not see any reason why this conclusion would be
different in the case of branched polymers. However, it
should be stressed that there is considerable freedom in
choosing the criteria for pruning and enrichment.

In particular, the Rosenbluth weight may not be the
best quantity to use as a pruning criterion. Other quan-
tities that are more strongly correlated with the con-
tribution of a particular chain conformation to the final
Boltzmann average, may yield better pruning criteria.

Also, as we mention above, since it is useless to enrich
chains with a high Rosenbluth weight, one can imagine
to enrich only a small window of the histograms
presented in figure 4. However, it then becomes difficult
to define a strategy for finding the optimal upper
thresholds.
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computer simulations have been a driving force behind
many developments in that field. This research has been
supported by a Marie Curie Fellowship of the European
Community program ‘Improving Human Research
Potential and the socio-economic Knowledge Base’
under contract number HPMF-CT-2001-01212.
Disclaimer: the authors are solely responsible for infor-
mation communicated and the European Commission is
not responsible for any views or result expressed. The
work of the FOM Institute is part of the research
program of FOM and is made possible by financial
support from the Netherlands organization for Scientific
Research (NWO).

Appendix: Pseudo-code summary

We present here a pseudo-code summary for readers
who would implement the DPERM algorithm.

(1) Generate a trial set of conformations using
the PERM scheme: the weight of that set is
given by WtotalðnewÞ ¼

P
set W	

chainðnewÞ, where
W	

chainðnewÞ is the weight of each chain.
(2) Choose one of these conformations for a

trial move with the probability PchooseðnewÞ ¼
W	

chainðnewÞ=WtotalðnewÞ.
(3) ‘Retrace’ the old conformation and compute the

weight of the corresponding set of conforma-
tions: WtotalðoldÞ ¼

P
set W	

chainðoldÞ.
(4) Accept the trial move with the probability

acc ðold! newÞ ¼min 1,
WtotalðnewÞ

WtotalðoldÞ

� �
: ðA1Þ

The trial set of conformations of a chain of size l is
generated using the PERM scheme.

Make a stack where the set of chains will be recorded.
The first monomer is inserted at a random lattice
position. The weight of this partial chain is
W	ð1Þ ¼ exp ð��uð1ÞÞ, where uð1Þ is the energy of the

Dynamic pruned-enriched Rosenbluth method 1681
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monomer. The stack has only one element: this chain of
1 monomer.

(1) Choose a position for the next monomer i of the
chain on the top of the stack using the
Rosenbluth scheme. The partial weight at posi-
tion i of the chain is given by W	

partialðiÞ ¼ wi	

W	
partialði � 1Þ, where wi has been defined in } 2. If

i ¼ l then remove this chain from the stack and
record its weight. If the stack is not empty,
restart from the partial chain on the top of it and
repeat step 1. If it is empty, end the procedure.

(2) If W	
partialðiÞ < W<ðiÞ. With a probability 1/2,

choose one of the following steps.

(a) Assign a weight W	 ¼ 0 to the chain and
forgive its generation. Remove it from the
stack.

Check the stack, if it is empty, end the
procedure; if not, restart from the partial
chain on the top of the stack and repeat step 1.

(b) Multiply the weight of that chain by 2.
W	

partialðiÞ ¼ 2 	 W	
partialðiÞ. Repeat step 1.

(3) If W	
partialðiÞ > W<ðiÞ. Make k copies of this

partial chain and put them onto the stack.
Assign to each copies the weight W	

partialðiÞ ¼
W	

partialðiÞ=k. Continue using the partial chain on
the top of the stack and repeat step 1.

Similarly, to determine the weight of the old config-
uration we use the following steps.

(1) One of the chains is selected at random. This
chain will be denoted by o.

(2) Compute the weight using the Rosenbluth
technique exactly like in the CBMC algorithm.
However, every time W	

partialðiÞ < W<ðiÞ, multi-
ply the weight by two W	

partialðiÞ ¼ 2 	 W	
partialðiÞ.

Every time the weight W	
partialðiÞ > W<ðiÞ,

make k � 1 copies and put them in a stack.
Each of these copies as well as the chain o have a
weight W	

partialðiÞ ¼ W	
partialðiÞ=k.

(3) Starting from the chain on the top of the
stack, restart from step 1 of the preceding
scheme to produce the set of conformation
using PERM.

The weight factor associated with the chain o and its set
of conformations is then given by

WtotalðoldÞ ¼
X
set

W	
chainðoldÞ: ðA2Þ
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